
1 

 

Module 4 - Multiple Logistic Regression 

 

 

You can jump to specific pages using the contents list below. If you are new to this 

module start at the overview and work through section by section using the 'Next' and 

'Previous' buttons at the top and bottom of each page. Be sure to tackle the exercise 

and the quiz to get a good understanding.

Objectives 

 Understand the principles and theory underlying logistic regression 

 

 Understand proportions, probabilities, odds, odds ratios, logits and exponents 

 

 Be able to implement multiple logistic regression analyses using SPSS and 

accurately interpret the output 

 

 Understand the assumptions underlying  logistic regression analyses and how 

to test them 

 

 Appreciate the applications of  logistic regression in educational research, and 

think about how it may be useful in your own research  

 

 

 

Start Module 4: Multiple Logistic Regression 

Using multiple variables to predict dichotomous outcomes. 
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4.1 Overview 

 

What is Multiple Logistic Regression? 

In the last two modules we have been concerned with analysis where the outcome 

variable (sometimes called the dependent variable) is measured on a continuous 

scale. However many of the variables we meet in education and social science more 

generally have just a few, maybe only two categories. Frequently we have only a 

dichotomous or binary outcome. For example this might be whether a student plans to 

continue in full-time education after age 16 or not, whether they have identified 

Special Educational Needs (SEN), whether they achieve a certain threshold of 

educational achievement, whether they do or do not go to university, etc. Note that 

here the two outcomes are mutually exclusive and one must occur. We usually code 

such outcomes as 0 if the event does not occur (e.g. the student does not plan to 

continue in FTE after the age of 16) and 1 if the event does occur (e.g. the student 

does plan to continue in FTE after age 16).  

 

This module first covers some basic descriptive methods for the analysis of binary 

outcomes. This introduces some key concepts about percentages, proportions, 

probabilities, odds and odds-ratios. We then show how variation in a binary response 

can be modeled using regression methods to link the outcome to explanatory 

variables. In analyzing such binary outcomes we are concerned with modeling the 

probability of the event occurring given the level/s of one or more explanatory 

(independent/predictor) variables. This module is quite difficult because there are 

many new concepts in it. However if you persevere through the rationale below, you 

will find (hopefully!) that the examples make sense of it all. Also, like all things, the 

concepts and applications will grow familiar with use, so work through the examples 

and take the quizzes. 

 

Running through the example of SPSS 

As with previous modules you can follow us through the real-world examples that we 

use. You may now be familiar with the main adapted version of the LSYPE dataset but 

we also have a more specialized one for use with this module – the one we used in 
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the previous module. We recommend that you retrieve them from the ESDS website – 

playing around with them will really help you to understand this stuff!  

LSYPE 15,000     MLR LSYPE 15,000  
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4.2 An introduction to Odds, Odds Ratios and Exponents 

 

Let‟s start by considering a simple association between two dichotomous variables (a 

2 x 2 crosstabulation) drawing on the LSYPE dataset. The outcome we are interested 

in is whether students aspire to continue in Full-time education (FTE) after the age of 

16 (the current age at which students in England can choose to leave FTE). We are 

interested in whether this outcome varies between boys and girls. We can present this 

as a simple crosstabulation (Figure 4.2.1). 

 

Figure 4.2.1: Aspiration to continue in full time education (FTE) after the age of 

16 by gender: Cell counts and percentages 

 

 

We have coded not aspiring to continue in FTE after age 16 as 0 and aspiring to do so 

as 1. Although it is possible to code the variable with any values, employing the values 

0 and 1 has advantages. The mean of the variable will equal the proportion of cases 

with the value 1 and can therefore be interpreted as a probability. Thus we can see 

that the percentage of all students who aspire to continue in FTE after age 16 is 

81.6%. This is equivalent to saying that the probability of aspiring to continue in FTE in 

our sample is 0.816.  

 

Odds and odds ratios 

However another way of thinking of this is in terms of the odds. Odds express the 

likelihood of an event occurring relative to the likelihood of an event not occurring. In 

our sample of 15,431 students, 12,591 aspire to continue in FTE while 2,840 do not 

aspire, so the odds of aspiring are 12591/2840 = 4.43:1 (this means the ratio is 4.43 

to 1, but we conventionally do not explicitly include the :1 as this is implied by the 

odds). The odds tell us that if we choose a student at random from the sample they 
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are 4.43 times more likely to aspire to continue in FTE than not to aspire to continue in 

FTE.  

 

We don‟t actually have to calculate the odds directly from the numbers of students if 

we know the proportion for whom the event occurs, since the odds of the event 

occurring can be gained directly from this proportion by the formula (Where p is the 

probability of the event occurring.): 

 

Thus the odds in our example are:  

Odds= [p/(1-p)] = .816 / (1-.816 )= .816 /.184 = 4.43. 

 

The above are the unconditional odds, i.e. the odds in the sample as a whole.  

However odds become really useful when we are interested in how some other 

variable might affect our outcome. We consider here what the odds of aspiring to 

remain in FTE are separately for boys and girls, i.e. conditional on gender. We have 

seen the odds of the event can be gained directly from the proportion by the formula 

odds=p/(1-p).   

 

     So for boys the odds of aspiring to continue in FTE = .766/(1-.766)= 3.27  

     While for girls the odds of aspiring to continue in FTE = .868/(1-.868)= 6.56.  

 

These are the conditional odds, i.e. the odds depending on the condition of gender, 

either boy or girl. 

 

We can see the odds of girls aspiring to continue in FTE are higher than for boys. We 

can in fact directly compare the odds for boys and the odds for girls by dividing one by 

the other to give the Odds Ratio (OR). If the odds were the same for boys and for girls 

then we would have an odds ratio of 1. If however the odds differ then the OR will 

depart from 1. In our example the odds for girls are 6.53 and the odds for boys are 

3.27 so the OR= 6.56 / 3.27 = 2.002, or roughly 2:1. This says that girls are twice as 

likely as boys to aspire to continue in FTE. 
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Note that the way odd-ratios are expressed depends on the baseline or comparison 

category. For gender we have coded boys=0 and girls =1, so the boys are our natural 

base group. However if we had taken girls as the base category, then the odds ratio 

would be 3.27 / 6.56= 0.50:1. This implies that boys are half as likely to aspire to 

continue in FTE as girls. You will note that saying “Girls are twice as likely to aspire as 

boys” is actually identical to saying “boys are half as likely to aspire as girls”. Both 

figures say the same thing but just differ in terms of the base.  

 

Odds Ratios from 0 to just below 1 indicate the event is less likely to happen in the 

comparison than in the base group, odds ratios of 1 indicate the event is exactly as 

likely to occur in the two groups, while odds ratios from just above 1 to infinity indicate 

the event is more likely to happen in the comparator than in the base group. 

Extension D provides a table that shows the equivalence between ORs in the range 0 

to 1 with those in the range 1 to infinity. 

 

Seeing the relationship as a model 

An interesting fact can be observed if we look at the odds for boys and the odds for 

girls in relation to the odds ratio (OR). 

 

         For boys (our base group) the odds=     3.27 * 1        =   3.27 

         For girls the odds                             =    3.27 * 2.002 =   6.56. 

 

So another way of looking at this is that the odds for each gender can be expressed 

as a constant multiplied by a gender specific multiplicative factor (namely the OR). 

 

p/(1-p) = constant * OR. 

 

However there are problems in using ORs directly in any modeling because they are 

asymmetric. As we saw in our example above, an OR of 2.0 indicates the same 

relative ratio as an OR of 0.50, an OR of 3.0 indicates the same relative ratio as an 

OR of 0.33, an OR of 4.0 indicates the same relative ratio as an OR of 0.25 and so on. 

This asymmetry is unappealing because ideally the odds for males would be the 

opposite of the odds for females.  
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Odds, Log odds and exponents 

This asymmetry problem disappears if we take the „log‟ of the OR. „Log‟ doesn‟t refer 

to some sort of statistical deforestation… rather a mathematical transformation of the 

odds which will help in creating a regression model. Taking the log of an OR of 2 gives 

the value Log(2)= +0.302 and taking the log of an OR of 0.50 gives the value Log 

(0.5)= -0.302. See what‟s happened? The Log of the OR, sometimes called the logit 

(pronounced „LOH-jit‟, word fans!) makes the relationships symmetric around zero (the 

OR‟s become plus and minus .302). Logits and ORs contain the same information, but 

this difference in mathematical properties makes logits better building blocks for 

logistic regression. But what is a log function? How does it transform the ORs? Well, 

the natural log function looks like this (Figure 4.2.2): 

 

Figure 4.2.2: The natural log function 

 

 

So if we take the log of each side of the equation we can then express the log odds 

as: 

Log [p/(1-p)] = constant + log (OR) 

 

If the constant is labelled a, the log of the OR is labelled b, and the variable gender (x) 

takes the value 0 for boys and 1 for girls, then: 

Log [p/(1-p)] = a + bx 

 

Note that taking the log of the odds has converted this from a multiplicative to an 

additive relationship with the same form as the linear regression equations we have 
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discussed in the previous two modules (it is not essential, but if you want to 

understand how logarithms do this it is explained in Extension E). So the log of the 

odds can be expressed as an additive function of a + bx. This equation can be 

generalised to include any number of explanatory variables: 

Log [p/(1-p)] = a + b1x1+ b2x2 + b3x3 + ... + bnxn.  

 

Output from a logistic regression of gender on educational aspiration 

If we use SPSS to complete a logistic regression (more on this later) using the student 

level data from which the summary Figure 4.2.1 was constructed, we get the logistic 

regression output shown below (Figure 4.2.3).  

 

Figure 4.2.3: Output from a logistic regression of gender on aspiration to 

continue in FTE post 16 

 
 

Let‟s explain what this output means. The B weights give the linear combination of the 

explanatory variables that best predict the log odds. So we can determine that the log 

odds for: 

Male:         Log [p/(1-p)] = 1.186 + (0.694 * 0) = 1.186 

Female:     Log [p/(1-p)] = 1.186 + (0.694 * 1) = 1.880 

 

The inverse of the log function is the exponential function, sometimes conveniently 

also called the anti-logarithm (nice and logical!). So if we want to convert the log odds 

back to odds we take the exponent of the log odds. So the odds for our example are: 

Male:         Exp (1.186) = 3.27 

Female:     Exp (1.880) = 6.55 

 

The odds ratio is given in the SPSS output for the gender variable [indicated as 

Exp(B)] showing that girls are twice as likely as boys to aspire to continue in FTE. 

 

By simple algebra we can rearrange the formula odds= [p/(1-p] to solve for 

probabilities, i.e.  p= [odds/(1+odds)]: 

Males:       p= 3.27 / (1+3.27) = .766 
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Females:   p= 6.55 / (1+6.55) = .868. 

 

These probabilities, odds and odds ratios - derived from the logistic regression model 

- are identical to those calculated directly from Figure 4.2.1. This is because we have 

just one explanatory variable (gender) and it has only two levels (girls and boys). This 

is called a saturated model for which the expected counts and the observed counts 

are identical. The logistic regression model will come into its own when we have an 

explanatory variable with more than two values, or where we have multiple 

explanatory variables. However what we hope this section has done is show you how 

probabilities, odds, and odds ratios are all related, how we can model the proportions 

in a binary outcome through a linear prediction of the log odds (or logits), and how 

these can be converted back into odds ratios for easier interpretation. 

 

Take the quiz to check you are comfortable with what you have learnt so far. If you are 

not perturbed by maths and formulae why not check out Extension E for more about 

logs and exponents.
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4.3 A general model for binary outcomes 

 

The example we have been using until now is very simple because there is only one 

explanatory variable (gender) and it has only two levels (0=boys, 1=girls). With this in 

mind, why should we calculate the logistic regression equation when we could find out 

exactly the same information directly from the cross-tabulation? The value of the 

logistic regression equation becomes apparent when we have multiple levels in an 

explanatory variable or indeed multiple explanatory variables. In logistic regression we 

are not limited to simple dichotomous independent variables (like gender) we can also 

include ordinal variables (like socio-economic class) and continuous variables (like 

age 11 test score).  So the logistic regression model lets us extend our analysis to 

include multiple explanatory variables of different types. 

 

We can think of the data in Figure 4.2.1 (Page 4.2) in two ways. One is to think of 

them as two proportions, the proportion of students who aspire to continue in FTE in 

two independent samples, a sample of boys and a sample of girls. The other way is to 

think of the data as 13,825 observations, with the response always either 0 (does not 

wish to continue in FTE) or 1 (wishes to continue in FTE). Thus our response or 

outcome distribution is actually what is known as a binomial distribution since it is 

made up of only two values, students either do not aspire (0) or do aspire (1) to 

continue in FTE.  

 

As another way to consider the logic of logistic regression, consistent with what we 

have already described but coming at it from a different perspective, let‟s consider first 

why we cannot model a binary outcome using the linear regression methods we 

covered in modules 2 and 3. We will see that significant problems arise in trying to use 

linear regression with binary outcomes, which is why logistic regression is needed. 

 

The problem with linear regression for binary outcomes 

A new example: Five or more GCSE passes at A*-C including English and maths 

For this example let us take as our outcome as whether a student achieves the 

conventional measure of exam success in England, which is achieving five or more 

GCSE passes at grades A*-C, including English and maths (fiveem). This is a 
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frequently used measure of a student‟s „success‟ in educational achievement at age 

16. It is also used at an institutional level in school performance tables in England by 

reporting the proportion of students in each secondary school achieving this threshold, 

attracting considerable media attention. Our variable fiveem is coded „0‟ if the student 

did not achieve this threshold and „1‟ if the student did achieve it. We want to predict 

the probability of achieving this outcome depending on test score at age 11. We can fit 

a linear regression to this binary outcome as shown in Figure 4.3.1 below.  

 

Figure 4.3.1: A linear regression of age 11 test score against achieving five or 
more GCSE grades A*-C including English and maths (fiveem) 
 

 

 

The linear regression of age 11 score on fiveem give the following regression 

equation: 

Ŷ = .454 + .032 * X (where X=age 11 score which can range from -24 to 39). 

 

The predicted values take the form of proportions or probabilities. Thus at the average 

age 11 score (which was set to 0, see Extension A) the predicted probability is simply 

the intercept or .454 (i.e. 45.4%). At an age 11 score 1 SD below the mean (X=-10) 

the predicted probability = .454 + .032*-10 = .134, or 13.4%. At an age 11 score 1 SD 

above the mean (X=10) the predicted probability = .454 + .032*10 = .774, or 77.4%. 
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However there are two problems with linear regression that make it inappropriate to 

use with binary outcomes. One problem is conceptual and the other statistical.  

 

Lets deal with the statistical problem first. The problem is that a binary outcome 

violates the assumption of normality and homoscedasticity inherent in linear 

regression. Remember that linear regression assumes that most of the observed 

values of the outcome variable will fall close to those predicted by the linear 

regression equation and will have an approximately normal distribution (See Page 

2.6). Yet with a binary outcome only two Y values exist so there can only be two 

residuals for any value of X, either 1, predicted value (when Y=1) or  0, predicted 

value (when Y=0). The assumption of normality clearly becomes nonsensical with a 

binary response, the distribution of residuals cannot be normal when the distribution 

only has two values. It also violates the assumption of homoscedasticity, namely that 

the variance of errors is constant at all levels of X.  If you look at Figure 4.3.1 it is 

apparent that near the lower and upper extremes of X, where the line comes close to 

the floor of 0 and the ceiling of 1, the residuals will be relatively small, but near the 

middle values of X the residuals will be relatively large. Thus there are good statistical 

reasons for rejecting a linear regression model for binary outcomes. 

 

The second problem is conceptual. Probabilities and proportions are different from 

continuous outcomes because they are bounded by a minimum of 0 and a maximum 

of 1, and by definition probabilities and proportions cannot exceed these limits. Yet the 

linear regression line can extend upwards beyond 1 for large values of X and 

downwards below 0 for small values of X. Look again at Figure 4.3.1. We see that 

students with an age 11 score below -15 are actually predicted to have a less than 

zero (<0) probability of achieving fiveem. Equally problematic are those with an age 

11 score above 18 who are predicted to have a probability of achieving fiveem greater 

than one (>1). These values simply make no sense. 

 

We could attempt a solution to the boundary problem by assuming that any predicted 

values of Y>1 should be truncated to the maximum of 1. The regression line would be 

straight to the value of 1, but any increase in X above this point would have no 

influence on the predicted outcome. Similarly any predicted values of Y<0 could be 
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truncated to 0 so any decrease in X below this point would have no influence on the 

predicted outcome. However there is another functional form of the relationship 

between X and a binary Y that makes more theoretical sense than this „truncated‟ 

linearity. Stay tuned… 
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4.4 The logistic regression model 

 

To see this alternative form for the relationship between age 11 score and fiveem, let 

us plot the actual data from LSYPE. In Figure 4.4.1 the blue bars show the actual 

proportion of students with each age 11 test score that achieved fiveem. 

 

Figure 4.4.1: Probability of 5+ GCSE A*-C including English & maths by age 11 

test score 

 

 

We can see that the relationship between age 11 score and fiveem actually takes the 

form of an S shaped curve (a „sigmoid‟). In fact whenever we have a binary outcome 

(and are thus interested in modeling proportions) the sigmoid or S shaped curve is a 

better function than a linear relationship. Remember that in linear regression a one 

unit increase in X is assumed to have the same impact on Y wherever it occurs in the 

distribution of X. However the S shape curve represents a nonlinear relationship 

between X and Y. While the relationship is approximately linear between probabilities 

of 0.2 and 0.8, the curve levels off as it approaches the ceiling of 1 and the floor of 0. 

The effect of a unit change in age 11 score on the predicted probability is relatively 
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small near the floor and near the ceiling compared to the middle. Thus a change of 2 

or 3 points in age 11 score has quite a substantial impact on the probability of 

achieving fiveem around the middle of the distribution, but much larger changes in age 

11 score are needed to effect the same change in predicted probabilities at the 

extremes. Conceptually the S-shaped curve makes better sense than the straight line 

and is far better at dealing with probabilities. 

 

The logistic function 

There are many ways to generate an S shaped curve mathematically, but the logistic 

function is the most popular and easiest to interpret. A function is simply a process 

which transforms data in a systematic way – in this example it transforms log odds 

into a proportion. We described on Page 4.2 that there can be a linear and additive 

relationship between our explanatory variables and the log odds of the event 

occurring, so we can predict the log odds from our explanatory variables. 

 Log [p/(1-p)] = a + bx.  

 

The logistic function transforms the log odds to express them as predicted 

probabilities. First, it applies the reverse of the log (called the exponential or anti-

logarithm) to both sides of the equation, eliminating the log on the left hand side, so 

the odds can be expressed as:  

p/(1-p) = Exp(a+bx).   

 

Second, the formula can be rearranged by simple algebra1 to solve for the value p.  

 p = Exp(a+bx) / [ 1 + Exp(a+bx)] 

 

So the logistic function transforms the log odds into predicted probabilities. Figure 

4.4.2 shows the relationship between the log odds (or logit) of an event occurring and 

the probabilities of the event as created by the logistic function. This function gives the 

distinct S shaped curve. 

 

 

 

                                            
1
 You will have to take my word on this, but a formula p / (1-p) =x can be rearranged to p = x / (1+x). 
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Figure 4.4.2: The logistic function 

 

 

Look back to Figure 4.4.1 where the blue bars shows the actual proportion of 

students achieving fiveem for each age 11 test score. We have superimposed over 

the actual figures a red line that shows the predicted probabilities of achieving fiveem 

as modeled from a logistic regression using age 11 test score as the explanatory 

variable. Comparing these predicted probabilities (red line) to the actual probability of 

achieving fiveem (blue bars) we can see that the modeled probabilities fit the actual 

data extremely well. 

 

Why do we model the log odds rather than probabilities or proportions? 

The log odds are more appropriate to model than probabilities because log odds do 

not have the floor of 0 and the ceiling of 1 inherent in probabilities. Remember the 

probability of an event occurring cannot be <0 or >1. What the log odds does is to 

„stretch‟ the proportion scale to eliminate these floor and ceiling effects. They do this 

by (i) transforming the probabilities to odds, and (ii) taking the log of the odds.  

 

Odds remove the ceiling 

We saw in Figure 4.4.1 that there is a non-linear relationship between X and Y - for 

example, we need larger changes in X to effect the same proportionate increase in Y 

at the ceiling compared to near the middle. Odds can model this property because 

larger changes in odds are needed to effect the same change in the probabilities 
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when we are at the ceiling than at the middle of the curve. Let‟s look at specific figures 

using Figure 4.4.3 which shows the relationship between probabilities, odds and log 

odds.  

 

Figure 4.4.3: Probabilities, odds and log odds 

 

 

A change in the probability of an event occurring from .5 to .6 is associated with a 

change in odds from 1.0 to 1.5 (an increase of 0.5 in the odds). However a similar 

change in probability from .8 to .9 reflects a much larger change in the odds from 4.0 

to 9.0 (an increase of 5 in the odds). Thus modeling the odds reflects the fact that we 

need larger changes in X to effect increases in proportions near the ceiling of the 

curve than we do at the middle. 

 

Log odds remove the floor (as well as the ceiling) 

Transforming probabilities into odds has eliminated the ceiling of 1 inherent in 

probabilities, but we are still left with the floor effect at 0, since odds, just like 

proportions, can never be less than zero. However taking the log of the odds also 

removes this floor effect. 

 The log of odds below 1 produce negative numbers 

 The log of odds equal to 1 produce 0 

 The log of odds above 1 produce positive numbers  
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The log odds still has the non-linear relationship with probability at the ceiling, since a 

change in p from .5 to .6 is associated with an increase in log odds from 0 to 0.4, while 

a change in probability from .8 to .9 is associated with an increase in log odds from 

1.39 to 2.20 (or 0.8). However they also reflect the non-linear relationship at the floor, 

since a decrease in probability from .5 to .4 is associated with an decrease in log odds 

from 0 to -0.4, while a decrease in probability from .2 to .1 is associated with an 

decrease in log odds from -1.39 to -2.20 (or -0.8) (see Figure 4.4.3).  Also, as we 

discussed on Page 4.2 log odds have the advantage that they are symmetrical around 

0. A probability of 0.8 that an event will occur has log odds of 1.39, and the probability 

of 0.2 that the event will not occur has log odds of -1.39. So the log odds are 

symmetrical around 0. 
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4.5 Interpreting logistic equations 

 

We have seen that if we try to predict the probabilities directly we have the problem of 

non-linearity, specifically the floor at 0 and the ceiling at 1 inherent in probabilities. But 

if we use our explanatory variables to predict the log odds we do not have this 

problem. However while we can apply a linear regression equation to predict the log 

odds of the event, people have a hard time understanding log odds (or logits). 

Remember that a logit is just a log of the odds, and odds are just are a function 

of p (the probability of a 1). We can convert the log odds back to odds by applying 

the reverse of the log which is called the exponential (sometimes called the anti-

logarithm) to both sides. Taking the exponent eliminates the log on the left handside 

so the odds can be expressed as:  

p/(1-p) = Exp(a+bx).   

 

We can also rearrange this equation to find the probabilities as:  

p= Exp(a+bX) / [1 + Exp(a+bX )] 

which is the logistic function, which converts the log odds to probabilities.  

 

So now rather than log odds or logits, which people are not happy talking about, we 

can talk about odds and probabilities, which people are happier talking about (at least 

relatively!). 

 

Interpreting the logistic regression for our example Fiveem  

So let‟s return to our example of modelling the probability of achieving five or more 

GCSE A*-C grades including English & maths (fiveem) from age 11 test score. 

The SPSS logistic regression output is shown in the table below. 

 

Figure 4.5.1: Logistic regression for Fiveem by age 11 score 
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The B coefficients describe the logistic regression equation using age 11 score to 

predict the log odds of achieving fiveem, thus the logistic equation is:  

  log [p/(1-p)] = -.337 + .235 * age 11 score.  

 

Figure 4.5.2 lets us visualize the equation. The left hand chart shows the linear 

relationship between age 11 score and the log odds of achieving fiveem. This line has 

an intercept of -.337 and a slope of .235 and is clearly linear. However we can use the 

logistic function to transform the log odds to predicted probabilities, which are shown 

in the right hand chart. Looking back to Figure 4.4.1 on Page 4.4 we see how well 

these predicted probabilities match the actual data on the proportion of pupils 

achieving fiveem at each age 11 score. 

 
 

Figure 4.5.2: Relationship between age 11 score and (a) the log odds of 
achieving 5+ GCSE A*-C including English & maths (b) the probability of 

achieving 5+ GCSE A*-C including English and maths. 

  
 

The logistic regression equation indicates that a one unit increase in age 11 test score 

is associated with a .235 increase in the log odds of achieving fiveem. Taking the 

exponent of the log odds, indicated in the output as Exp(B), gives the Odds Ratio, 

which shows that a one unit increase in age 11 test score increases the odds of 

achieving fiveem by a multiplicative factor of 1.27. Various procedures also exist to 

calculate the effects of a unit change in the b on the probability of Y occurring. 
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However the effect on probabilities depends on the point of the logistic curve at which 

the effect is calculated (e.g. a one unit change in age 11 score from -10 to -9 would 

give a different change in the predicted probability than a one unit change in age 11 

score from 0 to 1). This is why we typically stick to ORs as the main way of 

interpreting the logistic regression results. (For more detail on interpreting the age 11 

coefficient see Pages 4.10 and 4.12). 

 

Summary 

So in summary we have seen that when attempting to predict probabilities (which we 

are doing when we model binary outcomes) linear regression in inappropriate, both for 

statistical and conceptual reasons. With binary outcomes the form of the relationship 

between an explanatory variable X and the probability of Y is better modeled by an S-

shaped curve. While the relationship between X and the probability of Y is non-linear 

(it is in fact curvilinear), and therefore cannot be modeled directly as a linear function 

of our explanatory variables, there can be a linear and additive combination of our 

explanatory variables that predict the log odds, which are not restricted by the floor of 

0 and ceiling of 1 inherent in probabilities. These predicted log odds can be converted  

back to odds (by taking the exponential) and to predicted probabilities using the 

logistic function. 

 

How are the logistic regression coefficients computed? 

In logistic regression, the regression coefficients deal in probabilities so they cannot 

be calculated in the same way as they are in linear regression. While in theory we 

could do a linear regression with logits as our outcome, we don‟t actually have logits 

for each individual observation we just have 0‟s or 1‟s. The regression coefficients 

have to be estimated from the pattern of observations (0‟s and 1‟s) in relation to the 

explanatory variables in the data. We don‟t need to be concerned with exactly how 

this works but the process of maximum likelihood estimation (MLE) starts with an 

initial arbitrary “guesstimate” of what the logit coefficients should be. The MLE seeks 

to manipulate the b‟s to maximize the log likelihood (LL) which reflects how likely it is 

(i.e. the log odds) that the observed values of the outcome may be predicted from the 

explanatory variables. After this initial function is estimated the residuals are tested 

and a re-estimate is made with an improved function and the process is repeated 
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(usually about half a dozen times) until convergence is reached (that is until the 

improvement in the LL does not differ significantly from zero). 
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4.6 How good is the model? 

 

The Deviance (-2LL) statistic 

We will need to ascertain how good our regression model is once we have fitted it to 

the data – does it accurately explain the data, or does it incorrectly classify cases as 

often as it correctly classifies them? The deviance, or -2 log-likelihood (-2LL) statistic, 

can help us here. The deviance is basically a measure of how much unexplained 

variation there is in our logistic regression model – the higher the value the less 

accurate the model. It compares the difference in probability between the predicted 

outcome and the actual outcome for each case and sums these differences together 

to provide a measure of the total error in the model. This is similar in purpose to 

looking at the total of the residuals (the sum of squares) in linear regression analysis 

in that it provides us with an indication of how good our model is at predicting the 

outcome. The -2LL statistic (often called the deviance) is an indicator of how much 

unexplained information there is after the model has been fitted, with large values of -

2LL indicating poorly fitting models. Don‟t worry about the technicalities of this – as 

long as you understand the basic premise you‟ll be okay!  

 

The deviance has little intuitive meaning because it depends on the sample size and 

the number of parameters in the model as well as on the goodness of fit. We therefore 

need a standard to help us evaluate its relative size.  One way to interpret the size of 

the deviance is to compare the value for our model against a „baseline‟ model. In 

linear regression we have seen how SPSS performs an ANOVA to test whether or not 

the model is better at predicting the outcome than simply using the mean of the 

outcome. The change in the -2LL statistic can be used to do something similar: to test 

whether the model is significantly more accurate than simply always guessing that the 

outcome will be the more common of the two categories. We use this as the baseline 

because in the absence of any explanatory variables the „best guess‟ will be the 

category with the largest number of cases. 

 

Let‟s clarify this with our fiveem example. In our sample 46.3% of student achieve 

fiveem while 53.7% do not. The probability of picking at random a student who does 

not achieve the fiveem threshold is therefore slightly higher than the probability of 
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picking a student who does. If you had to pick one student at random and guess 

whether they would achieve fiveem or not, what would you guess? Assuming you 

have no other information about them, it would be most logical to guess that they 

would not achieve fiveem – simply because a slight majority do not. This is the 

baseline model which we can test our later models against. This is also the logistic 

model when only the constant is included. If we then add explanatory variables to the 

model we can compute the improvement as follows:  

 

X2= [-2LL (baseline)] - [-2LL (new)]  

with degrees of freedom= kbaseline- knew, where k  is the number of parameters in each 

model.  

 

If our new model explains the data better than the baseline model there should be a 

significant reduction in the deviance (-2LL) which can be tested against the chi-square 

distribution to give a p value. Don‟t worry - SPSS will do this for you! However if you 

would like to learn more about the process you can go to Extension F. 

 

The deviance statistic is useful for more than just comparing the model to the baseline 

- you can also compare different variations of your model to see if adding or removing 

certain explanatory variables will improve its predictive power (Figure 4.6.1)! If the 

deviance (-2LL) is decreasing to a statistically significant degree with each set of 

explanatory variables added to the model then it is improving at accurately predicting 

the outcome for each case. 

 

Figure 4.6.1 Predictors of whether or not student goes to university 

 

 

 

 

 

 

 

 

Increasing predictive power of model 

Decreasing value of log-linear statistic 

Baseline model Attitude to school, 

Parental expectations  

Prior attainment, 

SES, aspirations 
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R2 equivalents for logistic regression 

Another way of evaluating the effectiveness of a regression model is to calculate how 

strong the relationship between the explanatory variable(s) and the outcome is. This 

was represented by the R2 statistic in linear regression analysis. R2, or rather a form of 

it, can also be calculated for logistic regression. However, somewhat confusingly there 

is more than one version! This is because the different versions are pseudo-R2 

statistics that approximate the amount of variance explained rather than calculate it 

precisely. Remember we are dealing with probabilities here! Despite this it can still 

sometimes be useful to examine them as a way of ascertaining the substantive value 

of your model. 

 

The two versions most commonly used are Hosmer & Lemeshow’s R2 and 

Nagelkerke’s R2. Both describe the proportion of variance in the outcome that the 

model successfully explains. Like R2 in multiple regression these values range 

between „0‟ and „1‟ with a value of „1‟ suggesting that the model accounts for 100% of 

variance in the outcome and „0‟ that it accounts for none of the variance. Be warned: 

they are calculated differently and may provide conflicting estimates! These statistics 

are readily available through SPSS and we‟ll show you how to interpret them when we 

run through our examples over the next few pages. 
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4.7 Multiple explanatory variables 

 

As with linear regression, the more information we have to predict the outcome the 

more likely it is that we will be able to develop good models. Like multiple linear 

regression, multiple logistic regression allows the researcher to add many explanatory 

variables to the model. For example, if we know about the student‟s prior attainment, 

their gender, their attitude to school, their socio-economic status, their parent‟s 

expectations for them and so on, we can use all the explanatory variables together to 

better estimate which category of the outcome variable they will most likely fall into 

(see for example Figure 4.7.1 below).  

 

Figure 4.7.1 Multiple explanatory variables used to make classifications for 

binary variables 

 

 

Of course this will be true only if our additional explanatory variables actually add 

significantly to the prediction of the outcome! As in linear regression, we want to know 

not only how well the model overall fits the data, but also the individual contributions of 

the explanatory variables. SPSS will calculate standard errors and significance values 

for all variables added to our model, so we can judge how much they have added to 

the prediction of the outcome. 
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Statistical significance of explanatory variables 

As in linear regression we want to know not only how the model overall fits the data 

but also the individual contribution of the explanatory variables. The use of the Wald 

statistic is analogous to the t-test performed on the regression coefficients in linear 

regression to test whether the variable is making a significant contribution to the 

prediction of the outcome, specifically whether the explanatory variable‟s coefficient is 

significantly different from zero. SPSS calculates and reports the Wald statistic and 

importantly the associated probability (p-value).  Some caution is necessary however 

when interpreting the Wald statistic. If the coefficient (B) is large then this can result in 

the standard error becoming disproportionately large which can lead to an 

inaccurately small Wald statistic. This can result in false conclusions being drawn 

about the contribution of the explanatory variable to the model (you are more likely to 

reject the significance of an explanatory variable that is actually important). The Wald 

statistic is a useful indicator of whether or not an explanatory variable is important but 

should be interpreted with care! If in doubt you should compare the deviance (-2LL) of 

a model including the explanatory variable to a previous model without the variable to 

see whether the reduction in -2LL is statistically significant. We will show you an 

example of this later. 

 

Effect size of explanatory variables 

The above tells us whether an explanatory variable makes a statistically significant 

contribution to predicting the outcome, but we also want to know the size or 

magnitude of the association. In linear regression the regression coefficients (b) are 

the increase in Y for a one unit increase in X. In logistic regression we are not 

predicting a continuous dependent variable but the log odds of the outcome occurring. 

Thus in logistic regression the b coefficient indicates the increase in the log odds of 

the outcome for a one unit increase in X. However as we have seen these log odds 

(or logits) do not provide an intuitively meaningful scale to interpret the change in the 

dependent variable. Taking the exponent of the log odds allows interpretation of the 

coefficients in terms of Odds Ratios which are substantive to interpret. Helpfully, 

SPSS gives this OR for the explanatory variable labeled as Exp(B). 
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Dichotomous (or dummy) explanatory variables  

For a dichotomous explanatory variable the OR is simply the difference between the 

odds for the base category (x=0) and the other category (x=1). Thus in our earlier 

example for gender and aspirations the OR was 2.0 indicating girls (x=1) were twice 

as likely as boys (x=0) to aspire to continue in FTE. While the OR is sufficient for 

meaningful interpretation, some researchers also like to express the OR in percentage 

terms. Subtracting 1 from the OR and multiplying by 100 gives the percentage 

change. Thus (2-1) *100 = a 100% increase in the odds. 

 

Continuous explanatory variables 

What about a continuous predictor, like age 11 score? Figure 4.5.1 (on Page 4.5) 

indicates the OR [Exp(B)]  associated with age 11 score is 1.27, thus a one unit 

increase in age 11 standard score increases the odds of achieving fiveem by a factor 

of 1.27 or 27%. Given that age 11 score is a continuous variable that has a standard 

deviation (SD) of 10, it would be more meaningful to compare the increase in odds 

associated with a 1SD change, or a 10 unit increase in age 11 score. If we multiply the 

SD by the b coefficient of .235, there is a 2.35 increase in the log odds for a 1 SD 

change in age 11 score. Remembering that to convert this into a statement about the 

odds of the outcome - rather than the log odds - we have to take the exponential, so 

Exp(2.35) or e2.35 = 10.5. So a 1 SD increase in age 11 score increases the odds of 

achieving fiveem by a factor of 10.5. If we wanted to calculate this as a percentage 

change then (10.5-1)*100= a 950% change in the odds. Wow! 
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4.8 Methods of Logistic Regression 

 

As with linear regression we need to think about how we enter explanatory variables 

into the model. The process is very similar to that for multiple linear regression so if 

you‟re unsure about what we‟re referring to please check the section entitled „methods 

of regression‟ on Page 3.2. The control panel for the method of logistic regression in 

SPSS is shown below. 

 

As you can see it is still possible to group the explanatory variables in blocks and to 

enter these blocks in to the model in order of importance. Thus the above screen shot 

show we are at „Block 1 of 1‟, but we can use the „Next‟ button to set up a second 

block if we want to. The „Enter‟ option should also be familiar - when selected, all 

explanatory variables (here labeled „covariates‟ by SPSS – just to add an extra little 

challenge!) in the specific block are forced into the model simultaneously. 

 

The main difference for logistic regression is that the automated „stepwise‟ entry 

methods are different. Once again the forward and backward methods are present. 

They differ in how they construct the regression model, with the forward method 

adding explanatory variables to a basic model (which includes only the constant, B0) 

and the backwards method removing explanatory variables from the full model (one 

including all the specified explanatory variables). SPSS makes these decisions based 

on whether the explanatory variables meet certain criteria. You can choose three 

different types of criteria for both forward and backward stepwise entry methods: 
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„Conditional‟, „LR‟ and „Wald‟. „LR‟ stands for Likelihood Ratio which is considered the 

criterion least prone to error. 

 

We haven‟t gone into too much detail here partly because stepwise methods confuse 

us but mainly because they are not generally recommended. They take important 

decisions away from the researcher and base them on mathematical criteria rather 

than sound theoretical logic. Stepwise methods are only really recommended if you 

are developing a theory from scratch and have no empirical evidence or sensible 

theories about which explanatory variables are most important. Most of the time we 

have some idea about which predictors are important and the relative importance of 

each one, which allows us to specify the entry method for the regression analysis 

ourselves. 
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4.9 Assumptions 

You will find that the assumptions for logistic regression are very similar to the 

assumptions for linear regression. If you need a recap, rather than boring you by 

repeating ourselves like statistically obsessed parrots (the worst kind of parrot) we 

direct you to our multiple regression assumptions on Page 3.3. However, there are 

still three key assumptions which you should be aware of: 

 

Linearity (sort of...): For linear regression the assumption is that the outcome variable 

has a linear relationship with the explanatory variables, but for logistic regression this 

is not possible because the outcome is binary. The assumption of linearity in logistic 

regression is that any explanatory variables have a linear relationship with the logit of 

the outcome variable. „What are they on about now?‟ we imagine you‟re sighing. If the 

relationship between the log odds of the outcome occurring and each of the 

explanatory variables is not linear than our model will not be accurate. We‟ll discuss 

how to evaluate this in the context of SPSS over the coming pages, but the best way 

to check that the model you are creating is sensible is by looking at the model fit 

statistics and pseudo R2. If you are struggling with the concept of logits and log odds 

you can revise Pages 4.2 and 4.4 of this module.  

 

Independent errors: Identical to linear regression, the assumption of independent 

errors states that errors should not be correlated for two observations. As we said 

before in the simple linear regression module, this assumption can often be violated in 

educational research where pupils are clustered together in a hierarchical structure. 

For example, pupils are clustered within classes and classes are clustered within 

schools. This means students within the same school often have a tendency to be 

more similar to each other than students drawn from different schools. Pupils learn in 

schools and characteristics of their schools, such as the school ethos, the quality of 

teachers and the ability of other pupils in the school, may affect their attainment.  In 

large scale studies like the LSYPE such clustering can to some extent be taken care 

of by using design weights which indicate the probability with which an individual case 

was likely to be selected within the sample. Thus published analyses of LSYPE (see 

Resources Page) specify school as a cluster variable and apply published design 

weights using the SPSS complex samples module. More generally researchers can 
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control for clustering through the use of multilevel regression models (also called 

hierarchical linear models, mixed models, random effects or variance component 

models) which explicitly recognize the hierarchical structure that may be present in 

your data.  Sounds complicated, right? It definitely can be and these issues are more 

complicated than we need here where we are focusing on understanding the 

essentials of logistic regression. However if you feel you want to develop these skills 

we have an excellent sister website provided by another NCRM supported node called 

LEMMA which explicitly provides training on using multilevel modeling including for 

logistic regression. We also know of some good introductory texts on multilevel 

modelling and you can find all of this among our Resources. 

 

Multicollinearity: This is also identical to multiple regression. The assumption requires 

that predictor variables should not be highly correlated with each other. Of course 

predictors are often correlated with each other to some degree. As an example, below 

is a correlation matrix (Figure 4.9.1) that shows the relationships between several 

LSYPE variables. 

 

Figure 4.9.1: Correlation Matrix – searching for multicollinearity issues 

 

As you might expect, IDACI (Income Deprivation Affecting Children Index) is 

significantly related to the SEC (socio-economic classification) of the head of the 
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household but the relationship does not appear strong enough (Pearson‟s r = .42) to 

be considered a problem. Usually values of r = .8 or more are cause for concern. As 

before the Variance Inflation Factor (VIF) and tolerance statistics can be used to help 

you verify that multicollinearity is not a problem (see Page 3.3).
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4.10 An example from LSYPE 

 

Now that we have discussed the theory underlying logistic regression let‟s put it into 

practice with an example from the LSYPE dataset. As we have said, in England, the 

success of education is often judged by whether a student achieve five or more GCSE 

at grades A* - C‟, including the subjects of English and maths, when they take these 

exams at age 16 (our humble fiveem variable). This criterion is considered a 

benchmark of academic success - it can dictate whether or not a student is advised to 

continue their studies after the age of 16 and it plays a role in deciding which courses 

of study are available to them. You will know by now that we have a strong research 

interest in equity issues in relation to educational achievement. So for this example we 

will explore the extent to which ethnicity, social class and gender are associated with 

the probability of a student achieving 5 or more GCSE A*-C grades including English 

and maths (fiveem).  

 

Descriptive statistics 

As with all research we should not run straight to the statistical analyses, even though 

this might be the sexier bit because it is so clever! The starting point should always be 

simple descriptive statistics so we better understand our data before we engage with 

the more complex stuff. So what is the pattern of association between our key 

variables of ethnicity, SEC and gender and fiveem? 

 

Remember, as we said on Page 4.2, that the advantage of coding our binary 

response as 0 and 1 is that the mean will then indicate the proportion achieving our 

outcome (the value coded 1). We can therefore just ask for simple means of fiveem by 

our independent variables (Figure 4.10.1). 



36 

 

Figure 4.10.1: Mean, N and SD of fiveem by student background variables 

 

 

Note: You will remember from module 2 that LSYPE was unable to code the SEC of 
the head of household for quite a large proportion (18%) of LSYPE students. These 
cases are coded 0 which has been defined as the missing value for SECshort. 
However, we do not want to lose this many cases from the analysis. To include these 
cases we have redefined the missing values property for SECshort to „no missing 
values‟. This means that those cases where SEC is not known (0) are included in the 
above table. We will explain how we to do this on Page 4.13. 

 

We see that the proportion of White British students achieving fiveem is 48%. The 

proportion is substantially higher among Indian students (59%) and substantially lower 

among Black Caribbean students (33%), with the other ethnic groups falling in 

between these two extremes. There is also a substantial association between SEC 

and fiveem. While 29% of students from low SEC home achieve fiveem, this rises to 

45% for students from middle SEC homes and 66% for students from high SEC 

homes. Finally there is also a difference related to gender, with 43% of boys achieving 

fiveem compared to 51% of girls. 
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In the table you will see that we have also calculated and included the odds and the 

odds ratios (OR) as described on Page 4.2. You will remember the odds are 

calculated as [p/(1-p)] and represent the odds of achieving fiveem relative to the 

proportion not achieving fiveem. We did this in Microsoft EXCEL, but you could 

equally easily use a calculator. The OR compares the odds of success for a particular 

group to a base category for that variable. For the variable ethnicity we have selected 

White British as the base category. From the OR we can therefore say that Indian 

students are 1.58 times more likely than White British students to achieve fiveem. 

From Page 4.7 you will also remember that I can express this in percentage terms (1-

OR *100), so Indian students are 58% more likely to achieve fiveem than White British 

students. Conversely for Black Caribbean students the OR is 0.53, so Black 

Caribbean students are about half as likely as White British students to achieve 

fiveem. In percentage terms (1-OR * 100) they are 47% less likely to achieve fiveem.  

The ORs for SEC and for gender were calculated in the same way. 
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4.11 Running a logistic regression model on SPSS 

 

So we can see the associations between ethnic group, social class (SEC), gender and 

achievement quite clearly without the need for any fancy statistical analysis. Why 

would we want to get involved in logistic regression modeling? There are three rather 

good reasons: 

 

 To evaluate the statistical significance of the above associations. Remember 

that this data represents only a sample (although a very large sample) from the 

population of all students in England (approximately 600,000 students in any 

one year group). Are the effects in the sample sufficiently large relative to their 

standard errors that they are likely to be true in the population? 

 To gauge the effect of one explanatory variable (e.g. ethnicity) on the outcome 

when controlling for other variables also associated with the outcome (e.g. SEC 

and gender). Specifically we are interested here in what the OR for ethnicity 

looks like after we have controlled for differences in exam achievement 

associated with SEC and gender. 

 To gauge the extent and significance of any interactions between the 

explanatory variables in their effects on the outcome. 

 

To do this we will need to run a logistic regression which will attempt to predict the 

outcome fiveem based on a student‟s ethnic group, SEC and gender.  

 

Setting up the logistic regression model 

 

Let‟s get started by setting up the logistic regression analysis. We will create a logistic 

regression model with three explanatory variables (ethnic, SEC and gender) and one 

outcome (fiveem) – this should help us get used to things! You can open up the 

LSYPE 15,000 Dataset  to work through this example with us.  

 

Take the following route through SPSS: Analyse> Regression > Binary Logistic 
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The logistic regression pop-up box will appear and allow you to input the variables as 

you see fit and also to activate certain optional features. First of all we should tell 

SPSS which variables we want to examine. Our outcome measure is whether or not 

the student achieves five or more A*-Cs (including Maths and English) and is coded 

as „0‟ for no and „1‟ for yes. This variable is labelled fiveem and should be moved in to 

the Dependent box. 

 

Any explanatory variables need to be placed in what is named the covariates box. If 

the explanatory variable is continuous it can be dropped in to this box as normal and 

SPSS can be trusted to add it to the model, However, the process is slightly more 

demanding for categorical variables such as the three we wish to add because we 

need to tell SPSS to set up dummy variables based on a specific baseline category 

(we do not need to create the dummies ourselves this time… hooray!).  

 

Let‟s run through this process. To start with, move ethnic, SEC and Gender into the 

covariates box. Now they are there we now need to define them as categorical 

variables. To do this we need to click the button marked „Categorical‟ (a rare moment 

of simplicity from our dear friend SPSS) to open a submenu. You need to move all of 
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the explanatory variables that are categorical from the left hand list (Covariates) to the 

right hand window… in this case we need to move all of them! 

 

 

 

The next step is to tell SPSS which category is the reference (or baseline) category for 

each variable. To do this we must click on each in turn and use the controls on the 

bottom right of the menu which are marked „Change Contrast‟. The first thing to note 

is the little drop down menu which is set to „Indicator‟ as a default. This allows you to 

alter how categories within variables are compared in a number of ways (that you may 

or may not be pleased to hear are beyond the scope of this module). For our purposes 

we can stick with the default of „indicator‟, which essentially creates dummy variables 

for each category to compare against a specified reference category – a process 

which you are probably getting familiar with now (if not, head to Page 3.6).  

 

All we need to do then is tell SPSS whether the first or last category should be used 

as the reference and then click „Change‟ to finalize the setting. For our Ethnic variable 
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the first category is „0‟ White-British (the category with the highest number of 

participants) so, as before, we will use this as the reference category. Change the 

selection to „First‟ and click „Change‟. For the Gender variable we only have two 

categories and could use either male („0‟) or female („1‟) as the reference. Previously 

we have used male as the reference so we will stick with this (once again, change the 

selection to „First‟ and click „Change‟). Finally, for Socio Economic Class (sec) we will 

use the least affluent class as the reference („Never worked/long term unemployed - 

8‟). This time we will use the „Last‟ option given that the SEC categories are coded 

such that the least affluent one is assigned the highest value code. Remember to click 

„Change‟! You will see that your selections have appeared in brackets next to each 

variable and you can click „Continue‟ to close the submenu. 

 

Notice that on the main Logistic Regression menu you can change the option for 

which method you use with a drop down menu below the covariates box. As we are 

entering all three explanatory variables together as one block you can leave this as 

„Enter‟. You will also notice that our explanatory variables (Covariates) now have „Cat‟ 

printed next to them in brackets. This simply means that they have been defined as 

categorical variables, not that they have suddenly become feline (that would just be 

silly).  

 

The Logistic Regression Sub-menus 

Now that our variables have been defined we can start playing with the option menus. 

Beware SPSS‟s desire to dazzle you with a myriad of different tick boxes, options and 

settings - some people just like to show off! We‟ll guide you through the useful options. 

The save sub-menu is very useful and can be seen below. 
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If you recall, the save options actually create new variables for your data set. We can 

ask SPSS to calculate four additional variables for us: 

 

Predicted probabilities – This creates a new variable that tells us for each case the 

predicted probability that the outcome will occur (that fiveem will be achieved) based 

on the model.  

Predicted Group Membership – This new variable estimates the outcome for each 

participant based on their predicted probability. If the predicted probability is >0.5 then 

they are predicted to achieve the outcome, if it is <.5 they are predicted not to achieve 

the outcome. This .5 cut-point can be changed, but it is sensible to leave it at the 

default. The predicted classification is useful for comparison with the actual outcome! 

Residuals (standardized) – This provides the residual for each participant (in terms 

of standard deviations for ease of interpretation). This shows us the difference 

between the actual outcome (0 or 1) and the probability of the predicted outcome and 

is therefore a useful measure of error. 

Cook’s – We‟ve come across this in our travels before. This generates a statistic 

called Cook’s distance for each participant which is useful for spotting cases which 

unduly influence the model (a value greater than „1‟ usually warrants further 

investigation).  

 

The other options can be useful for the statistically-minded but for the purposes of our 

analysis the options above should suffice (we think we are fairly thorough!). Click on 

Continue to shut the sub-menu. The next sub-menu to consider is called options:  
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Again we have highlighted a few of the options here: 

 

Classification plots – Checking this option requests a chart which shows the 

distribution of outcomes over the probability range. This is useful for visually 

identifying where the model makes most incorrect categorizations. This will make 

more sense when we look at one on the Page 4.12!  

Hosmer-Lameshow Goodness of fit – This option provides a X2 (Chi-square) test of 

whether or not the model is an adequate fit to the data. The null hypothesis is that the 

model is a „good enough‟ fit to the data and we will only reject this null hypothesis (i.e. 

decide it is a „poor‟ fit) if there are sufficiently strong grounds to do so (conventionally if 

p<.05). We will see that with very large samples as we have here there can be 

problems with this level of significance, but more on that later.  

CI for exp(B) – CI stands for confidence interval and this option requests the range of 

values that we are confident that each odds ratio lies within. The setting of 95% 

means that there is only a p < .05 that the value for the odds ratio, exp(B), lies outside 

the calculated range (you can change the 95% confidence level if you are a control 

freak!). 

 

Click on continue to close the sub-menu. Once you are happy with all the settings take 

a deep breath... and click OK to run the analysis. 
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4.12 The SPSS Logistic Regression Output 

 

SPSS will present you with a number of tables of statistics. Let‟s work through and 

interpret them together. First of all we get these two tables (Figure 4.12.1): 

 

Figure 4.12.1: Case Processing Summary and Variable Encoding for Model 

 

 

The Case Processing Summary simply tells us about how many cases are included in 

our analysis The second row tells us that 3423 participants are missing data on some 

of the variables included in our analysis (they are missing either ethnicity, gender or 

fiveem, remember we have included all cases with missing SEC), but this still leaves 

us with 12347 cases to analyse. The Dependent Variable Encoding reminds us how 

our outcome variable is encoded – „0‟ for „no‟ (Not getting 5 or more A*-C grades 

including Maths and English) and „1‟ for „yes‟ (making the grade!). 

 

Next up is the Categorical Variables Encoding Table (Figure 4.12.2). It acts as an 

important reminder of which categories were coded as the reference (baseline) for 

each of your categorical explanatory variables. You might be thinking „I can remember 

what I coded as the reference category!‟ but it easy to get lost in the output because 

SPSS has a delightful tendency to rename things just as you are becoming familiar 

with them… In this case „parameter coding‟ is used in the SPSS logistic regression 

output rather than the value labels so you will need to refer to this table later on. Let‟s 

consider the example of ethnicity. White British is the reference category because it 

does not have a parameter coding. Mixed heritage students will be labeled “ethnic(1)” 

in the SPSS logistic regression output, Indian students will be labeled “ethnic(2)”, 
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Pakistani students “ethnic(3)” and so on. You will also see that „Never worked/long 

term unemployed‟ is the base category for SEC, and that each of the other SEC 

categories has a „parameter coding‟ of 1-7 reflecting each of the seven dummy SEC 

variables that SPSS has created. This is only important in terms of how the output is 

labeled, nothing else, but you will need to refer to it later to make sense of the output. 

 

Figure 4.12.2: Categorical Variables Coding Table 

 

 

The next set of output is under the heading of Block 0: Beginning Block (Figure 

4.12.3): 

Figure 4.12.3: Classification Table and Variables in the Equation 
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This set of tables describes the baseline model – that is a model that does not include 

our explanatory variables! As we mentioned previously, the predictions of this baseline 

model are made purely on whichever category occurred most often in our dataset. In 

this example the model always guesses „no‟ because more participants did not 

achieve 5 or more A*-C grades than did (6422 compared to 5925 according to our first 

column). The overall percentage row tells us that this approach to prediction is correct 

52.0% of the time – so it is only a little better than tossing a coin! 

 

The Variables in the Equation table shows us the coefficient for the constant (B0). This 

table is not particularly important but we‟ve highlighted the significance level to 

illustrate a cautionary tale! According to this table the model with just the constant is a 

statistically significant predictor of the outcome (p <.001). However it is only accurate 

52% of the time! The reason we can be so confident that our baseline model has 

some predictive power (better than just guessing) is that we have a very large sample 

size – even though it only marginally improves the prediction (the effect size) we have 

enough cases to provide strong evidence that this improvement is unlikely to be due 

to sampling. You will see that our large sample size will lead to high levels of statistical 

significance for relatively small effects in a number of cases. 

 

We have not printed the next table Variables not Included in the Model because all it 

really does is tell us that none of our explanatory variables were actually included in 

this baseline model (Block 0)… which we know anyway! It is however worth noting the 

number in brackets next to each variable – this is the „parameter coding‟ we 

mentioned earlier. As you can see, you will need to refer to the Categorical Variables 

Encoding Table to make sense of these! 

 

Now we move to the regression model that includes our explanatory variables. The 

next set of tables begins with the heading of Block 1: Method = Enter (Figure 4.12.4): 
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Figure 4.12.4: Omnibus Tests of Coefficients and Model Summary 

 

 

The Omnibus Tests of Model Coefficients is used to check that the new model (with 

explanatory variables included) is an improvement over the baseline model. It uses 

chi-square tests to see if there is a significant difference between the Log-likelihoods 

(specifically the -2LLs) of the baseline model and the new model. If the new model 

has a significantly reduced -2LL compared to the baseline then it suggests that the 

new model is explaining more of the variance in the outcome and is an improvement! 

Here the chi-square is highly significant (chi-square=1566.7, df=15, p<.000) so our 

new model is significantly better. 

 

To confuse matters there are three different versions; Step, Block and Model. The 

Model row always compares the new model to the baseline. The Step and Block rows 

are only important if you are adding the predictors to the model in a stepwise or 

hierarchical manner. If we were building the model up in stages then these rows would 

compare the -2LLs of the newest model with the previous version to ascertain whether 

or not each new set of explanatory variables were causing improvements. In this case 

we have added all three explanatory variables in one block and therefore have only 

one step. This means that the chi-square values are the same for step, block and 

model. The Sig. values are p < .001, which indicates the accuracy of the model 

improves when we add our explanatory variables.     

 

The Model Summary (also in Figure 4.12.4) provides the -2LL and pseudo-R2 values 

for the full model.  The -2LL value for this model (15529.8) is what was compared to 



48 

 

the -2LL for the previous null model in the „omnibus test of model coefficients‟ which 

told us there was a significant decrease in the -2LL, i.e. that our new model (with 

explanatory variables) is significantly better fit than the null model. The R2 values tell 

us approximately how much variation in the outcome is explained by the model (like in 

linear regression analysis). We prefer to use the Nagelkerke‟s R2 (circled) which 

suggests that the model explains roughly 16% of the variation in the outcome. Notice 

how the two versions (Cox & Snell and Nagelkerke) do vary! This just goes to show 

that these R2 values are approximations and should not be overly emphasized.  

 

Moving on, the Hosmer & Lemeshow test (Figure 4.12.5) of the goodness of fit 

suggests the model is a good fit to the data as p=0.792 (>.05). However the chi-

squared statistic on which it is based is very dependent on sample size so the value 

cannot be interpreted in isolation from the size of the sample. As it happens, this p 

value may change when we allow for interactions in our data, but that will be 

explained in a subsequent model on Page 4.13. You will notice that the output also 

includes a contingency table, but we do not study this in any detail so we have not 

included it here. 

 

Figure 4.12.5: Hosmer and Lameshow Test 

 

 

More useful is the Classification Table (Figure 4.12.6). This table is the equivalent to 

that in Block 0 (Figure 4.12.3) but is now based on the model that includes our 

explanatory variables. As you can see our model is now correctly classifying the 

outcome for 64.5% of the cases compared to 52.0% in the null model. A marked 

improvement!  
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Figure 4.12.6: Classification Table for Block 1 

 

 

However the most important of all output is the Variables in the Equation table (Figure 

4.12.7). We need to study this table extremely closely because it is at the heart of 

answering our questions about the joint association of ethnicity, SEC and gender with 

exam achievement. 

 

Figure 4.12.7: Variables in the Equation Table Block 1 

 
 

This table provides the regression coefficient (B), the Wald statistic (to test the 

statistical significance) and the all important Odds Ratio (Exp (B)) for each variable 

category.  
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Looking first at the results for SEC, there is a highly significant overall effect 

(Wald=1283, df=7, p<.000). The b coefficients for all SECs (1-7) are significant and 

positive, indicating that increasing affluence is associated with increased odds of 

achieving fiveem. The Exp(B) column (the Odds Ratio) tells us that students from the 

highest SEC homes are eleven (11.37) times more likely than those from lowest SEC 

homes (our reference category) to achieve fiveem. Comparatively those from the SEC 

group just above the poorest homes are about 1.37 times (or 37%) more likely to 

achieve fiveem than those from the lowest SEC group.  The effect of gender is also 

significant and positive, indicating that girls are more likely to achieve fiveem than 

boys. The OR tells us they are 1.48 times (or 48%) more likely to achieve fiveem, 

even after controlling for ethnicity and SEC (refer back to Page 4.7 „effect size of 

explanatory variables‟ to remind yourself how these percentages are calculated). 

 

Most importantly, controlling for SEC and gender has changed the associations 

between ethnicity and fiveem. The overall association between fiveem and ethnicity 

remains highly significant, as indicated by the overall Wald statistic, but the size of the 

b coefficients2 and the associated ORs for most of the ethnic groups has changed 

substantially. This is because the SEC profile for most ethnic minority groups is lower 

than for White British, so controlling for SEC has significantly changed the odds ratios 

for these ethnic groups (as it did in our multiple linear regression example). We saw in 

Figure 4.10.1 that Indian students (Ethnic(2)) were significantly more likely than White 

British students to achieve fiveem (OR=1.58), and now we see that this increases 

even further after controlling for SEC and gender (OR=1.97). Bangladeshi students 

(Ethnic(4)) were previously significantly less likely than White British students to 

achieve fiveem (OR=.80) but are now significantly more likely (OR=1.47). Pakistani 

(Ethnic(3)) students were also previously significantly less likely than White British 

students to achieve fiveem (OR=.64) but now do not differ significantly after controlling 

for SEC (OR=.92). The same is true for Black African (Ethnic(6)) students (OR change 

from .83 to .95). However the OR for Black Caribbean (Ethnic(5)) students has not 

changed much at all (OR change .53 to .57) and they are still significantly less likely to 

                                            
2. Before running this model we ran a model that just included ethnic group to estimate the b 
coefficients and to test the statistical significance of the ethnic gaps for fiveem. We haven’t 
reported it here because the Odds Ratios from the model are identical to those shown in 
Figure 4.10.1. However the b coefficients and their statistical significance are shown as 
Model 1 in Figure 4.15.1 where we show how to present the results of a logistic regression.  
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achieve fiveem than White British students, even after accounting for the influence of 

social class and gender. 

 

The final piece of output is the classification plot (Figure 4.12.8). Conceptually it 

answers a similar question as the classification table (see Figure 4.12.6) which is 

„how accurate is our model in classifying individual cases‟? However the classification 

plot gives some finer detail. This plot shows you the frequency of categorizations for 

different predicted probabilities and whether they were „yes‟ or „no‟ categorizations. 

This provides a useful visual guide to how accurate our model is by displaying how 

many times the model would predict a „yes‟ outcome based on the calculated 

predicted probability when in fact the outcome for the participant was „no‟.  

 

 

Figure 4.12.8: Observed groups and Predicted Probabilities 

 

 

If the model is good at predicting the outcome for individual cases we should see a 

bunching of the observations towards the left and right ends of the graph. Such a plot 

would show that where the event did occur (fiveem was achieved, as indicated by a „y‟ 

in the graph) the predicted probability was also high, and that where the event did not 

occur (fiveem was not achieved, indicated by a „n‟ in the graph) the predicted 

probability was also low. The above graph shows that quite a lot of cases are actually 

in the middle area of the plot, i.e. the model is predicting a probability of around .5 (or 
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a 50:50 chance) that fiveem will be achieved. So while our model identifies that SEC, 

ethnicity and gender are significantly associated with the fiveem outcome, and indeed 

can explain 15.9% of the variance in outcome (quoting the Nagelkerke pseudo-R2), 

they do not predict the outcome for individual students very well. This is important 

because it indicates that social class, ethnicity and gender do not determine students‟ 

outcomes (although they are significantly associated with it). There is substantial 

individual variability that cannot be explained by social class, ethnicity or gender, and 

we might expect this reflects individual factors like prior attainment, student effort, 

teaching quality, etc.  

 

Let‟s move on to discuss interaction terms for now – we will save explaining how to 

test the assumptions of the model for a little later. Something to look forward to!
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4.13 Evaluating interaction effects 

 

We saw in Module 3 when modeling a continuous measure of exam achievement (the 

age 14 average test score) that there were significant interactions between ethnic 

group and SEC (if you want to remind yourself about interaction effects head to Page 

3.11). There are therefore strong grounds to explore whether there are interaction 

effects for our measure of exam achievement at age 16. 

 

The first step is to add all the interaction terms, starting with the highest. With three 

explanatory variables there is the possibility of a 3-way interaction (ethnic * gender * 

SEC). If we include a higher order (3 way) interaction we must also include all the 

possible 2-way interactions that underlie it (and of course the main effects). There are 

three 2-way interactions: ethnic*gender, ethnic*SEC and Gender*SEC. Our strategy 

here is to start with the most complex 3-way interaction to see if it is significant. If it is 

not then we can eliminate it and just test the 2-way interactions. If any of these are not 

significant then we can eliminate them. In this way we can see if any interaction terms 

make a statistically significant contribution to the interpretation of the model. 

 

In this example we will use the MLR LSYPE 15,000  dataset because it contains 

some useful extra variables which we created for the last module. The process for 

creating a model with interaction terms is very similar to doing it without them so we 

won‟t repeat the whole process in detail (see the previous page, Page 4.12, if you 

require a recap). However, there is a key extra step which we describe below... 

 

Entering interaction terms to a logistic model 

The masters of SPSS smile upon us, for adding interaction terms to a logistic 

regression model is remarkably easy in comparison to adding them to a multiple linear 

regression one! Circled in the image below is a button which is essentially the 

„interaction‟ button and is marked as „>a*b>‟. How very helpful! All you have to do is 

highlight the two (or more) variables you wish to create an interaction term for in the 

left hand window (hold down „control‟ on your keyboard while selecting your variables 

to highlight more than one) and then use the „>a*b>‟ button to move them across to 

the right hand window as an interaction term.  
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The two variables will appear next to each other separated by a „*‟. In this way you 

can add all the interaction terms to your model. 

 

Reducing the complexity of the model  

If we were to create interaction terms involving all levels of SEC we would probably 

become overwhelmed by the sheer number of variables in our model. For the two-way 

interaction between ethnicity and SEC alone we would have seven ethnic dummy 

variables multiplied by seven SEC dummy variables giving us a total of 49 interaction 

terms! Of course, we could simplify the model if we treated SEC as a continuous 

variable, we would then have only seven terms for the interaction between ethnic * 

SEC. While it would be a more parsimonious model (because it has fewer parameters 

to model the interaction), treating SEC as a continuous variable would mean omitting 

the nearly 3,000 cases where SEC was missing. The solution we have taken to this 

problem, as described before on Page 3.12, is to use the shortened version of the 

SEC variable called SECshort which has only three (rather than eight) SEC categories 

(plus a code for missing values). That should make our lives a little less confusing! 

 

Even though we have chosen to use the three category SEC measure, the output is 

very extensive when we include all possible interaction terms. We have a total of 55 

interaction terms (three for gender*SECshort, seven for ethnic*gender, 21 for 
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ethnic*SECshort and a further 21 for ethnic*SECshort*gender). You will forgive us 

then if we do not ask you to run the analysis with all the interactions! Instead we will 

give you a brief summary of the preliminary analyses, before asking you to run a 

slightly less complex model.  Our first model included all the three-way and two way 

interactions as well as the main effects. It established that three-way interaction was 

not significant (p=0.91) and so could be eliminated. Our second model then included 

just all the two-way interactions (and main effects). This showed that the 

gender*SECshort and the ethnic*gender interactions were also not significant but the 

ethnic*SECshort interaction was significant. The final model therefore eliminated all 

but the ethnic*SECshort interaction which needs to be included along with the main 

effects. 

 

Running the logistic model with an interaction term 

So let‟s run this final model including the ethnic*SECshort interaction. Maybe you want 

to run through this example with us. In this model the „dependent‟ variable is fiveem 

(our Outcome Variable) and the „covariates‟ (our explanatory variables) are ethnic, 

gender, SECshort, and ethnic*SECshort (the interaction term, which is entered in the 

way that we showed you earlier on this page). Your final list of variables should look 

like the one below. 

 

 

 

Remember to tell SPSS which variables are categorical and set the options as we 

showed you on Page 4.11!   
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Before running this model you will need to do one more thing. Wherever it was not 

possible to estimate the SEC of the household in which the student lived SECshort 

was coded 0. To exclude these cases from any analysis the „missing value‟ indicator 

for SECshort is currently set to the value „0‟. As discussed on Page 3.9, it is actually 

very useful to include a dummy variable for missing data where possible. If we want to 

include these cases we will need to tell SPSS. Go to the „Variable view‟ and find the 

row of options for SECshort. Click on the box for Missing and change the option to „No 

missing values‟ (see below) and click OK to confirm the change.  

 

 

 

This will ensure that SPSS makes us a dummy variable for SEC missing. You can 

now click OK on the main menu screen to run the model! 

 

Interpreting the output 

The results of this final model are shown below. Rather than show you all of the output 

as on the previous page (Page 4.12), this time we will only show you the „Variables in 

the Equation‟ table (Figure 4.13.1) as it is most relevant to interpreting interaction 

effects.  
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Figure 4.13.1: Variables in the Equation Table with Interaction Terms 
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The overall Wald for the SECshort*ethnic interaction is significant (WALD=43.8, 

df=21, p<.005) so we proceed to look at the individual regression coefficients. You will 

need to refer to the Categorical Variables Encoding Table to remind yourself what 

each of these coefficients represents (for example SECshort(1)=missing; 

SECshort(2)= high SEC and SECshort(3)= middle SEC, with low SEC as the 

reference category). There are statistically significant coefficients for the interaction 

between Pakistani and middle and high SEC, between Bangladeshi and middle and 

high SEC and between Black Caribbean and high SEC.  

 

Working out the ORs with interaction effects is somewhat tricky (remember we 

encountered a similar issue for multiple linear regression modules on Page 3.11). As 

we have discussed, each B coefficient represents the change in the logit of our 

outcome predicted by a one unit change in our explanatory variable, but this is more 

complicated when we are also have interactions between our explanatory variables.  

 Each of the ethnic coefficients represents the difference between that ethnic 

group and „White British‟ students, but crucially only for students in the baseline 

category for SECshort (i.e. low SEC students). 

 For SECshort the coefficients represent the difference between each of the 

medium and high SEC categories and the baseline category of low SEC, but 

only for „‟White British‟ students. 

 The coefficients for each ethnic * SECshort interaction term represent how 

much the SEC contrasts vary for each ethnic group, relative to the size of the 

SEC effect among White British students. 

 

Interpreting the SEC gap for different ethnic groups 

We can see that SEC has a substantial association with achievement among White 

British students. White British students from high SEC homes are 5.67 times more 

likely to achieve fiveem than White British students from low SEC homes. How do we 

determine the size of the SEC effect among other ethnic groups? Well, when 

interaction terms are included in the model we need to calculate the predicted 

probabilities by adding the B coefficients together, as we did in multiple linear 

regression. So to estimate the SEC gap for Black Caribbean students we add the 

coefficient for high SEC [SECshort(2)] and the B for the interaction between Black 
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Caribbean and high SEC [SECshort(2) by ethnic(5)]. This gives = 1.735 + -.784 = 

0.953. What does this mean? Not much yet – we need to take the exponent to turn it 

into a trusty odds ratio: Exp(0.953)=2.59 (we used the =EXP() function in EXCEL or 

you could use a calculator). This means that among Black Caribbean students High 

SEC students are only 2.6 times more likely to achieve fiveem than low SEC students 

- the SEC gap is much smaller than among White British students. The important point 

to remember is that you cannot simply add up the Exp(B)s to arrive here – it only 

works if you add the B coefficients in their original form and then take the exponent of 

this sum! 

 

Interpreting the ethnic gaps at different levels of SEC 

The model has told us what the ethnic gaps are among low SEC students (the 

reference category). Suppose I wanted to know what the estimated size of the ethic 

gaps was among high SEC students, how would I do this? To find out you would rerun 

the model but set high SEC as the base or reference category. The coefficients for 

each ethnic group would then represent the differences between the average for that 

ethnic group and White British students among those from high SEC homes.  

 

Currently SECshort is coded as follows with the last category used as the reference 

group. 

SECshort value Label 

0 Missing SEC 
1 High SEC 
2 Middle SEC 
3 Low SEC (Reference category LAST) 

 

We can simply recode the value for missing cases from 0 to 9 and set the reference 

category to the first value, so High SEC becomes the reference category, as shown 

below: 

SECshort value Label 

1 High SEC (Reference category FIRST) 
2 Middle SEC 
3 Low SEC  
4 Missing SEC 

 

You can do this through the Transformation-Recode into new variable windows menu 

(see Foundation Module) or simply through the following syntax: 
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RECODE SECshort (0=4) (ELSE=Copy) INTO SECshortnew. 

EXECUTE 

 

We then rerun the model simply adding SECshortnew as our SEC measure. It is 

important to note that computationally this is an exactly equivalent model to when low 

SEC was the reference category. The coefficients for other variables (for example, 

gender) are identical, the contrast between low and high SEC homes is the same (you 

can check the B value in the output below), and the R2 and log-likelihood are exactly 

the same. All that has varied is that the coefficients printed for ethnicity are now the 

contrasts among high SEC rather than low SEC homes.  

 

The output is shown below (Figure 4.13.2). For convenience we have added labels to 

the values so you can identify the groups. As you know, this is not done by SPSS so it 

is vital that you refer to the Categorical variables encoding table when interpreting 

your output. It is apparent that the ethnic gaps are substantially different among high 

SEC than among low SEC students. Among low SEC students the only significant 

contrasts were that Indian, Bangladeshi and Any other ethnic group had higher 

performance than White British (see Figure 4.13.1). However among students from 

high SEC homes while Indian students again achieve significantly better outcomes 

than White British students, both Black Caribbean (OR=.36, p<.005) and Black African 

(OR=.685, p<.025) are significantly less likely to achieve fiveem than White British 

students by a considerable margin. Black Caribbean students are only about one third 

as likely to achieve fiveem as White British high SEC students. In percentage terms 

we can say they are 64% (0.358-1 * 100) less likely to achieve fiveem than White 

British students of the same SEC group. 
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Figure 4.13.2: Variables in the Equation Table with high SEC as the reference 

category 
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If we wanted to evaluate the ethnic gaps among students from middle SEC homes we 

would simply follow the same logic as above, recoding our values so that middle SEC 

was the first (or last) category and setting the reference category appropriately. 

 

Putting it all together - viewing the interactions graphically 

What is most helpful in understanding these interactions is to plot the data graphically. 

This gives us an easy visual indicator to help in interpreting the regression output and 

the nature of any interaction effects. We have done this in Figure 4.13.3 below. You 

can use Graphs > Legacy Dialogs > Line to create this graph or alternatively you 

can use the syntax below (see the Foundation Module if you require further 

guidance). Here we have plotted the actual means for fiveem, but you could equally 

plot the predicted probabilities if you saved them from the model (see Page 4.11). 

Note that in the graph we have omitted cases where SEC is missing by returning the 

missing value for SECshort to „0‟ before requesting the graph. 

 

GRAPH  /LINE(MULTIPLE)=MEAN(fiveem) BY SECshort BY ethnic.  

 

Figure 4.13.3: Mean Number of Students with Five or More A*-C grades (inc. 

English and Maths) by SEC and Ethnicity 
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The line graph shows a clear interaction between SEC and ethnicity. If the two 

explanatory variables did not interact we would expect all of the lines to have 

approximately the same slope (for example, the lines on the graph would be parallel 

when there is no interaction effect) but it seems that the effect of SEC on fiveem is 

different for different ethnic groups. For example the relationship appears to be very 

linear for White British students (blue line) – as the socio-economic group becomes 

more affluent the probability of fiveem increases. This not the case for all of the ethnic 

groups. For example, with regard to Black Caribbean students there is a big increase 

in fiveem as we move from low SEC to intermediate SEC, but a much smaller 

increase as we move to high SEC. As you (hopefully) can see, the line graph is a 

good way of visualizing an interaction between two explanatory variables. 

 

Now that we have seen how to create and interpret out logistic regression models 

both with and without interaction terms we must again turn our attention to the 

important business of checking that the assumptions underlying our model are met 

and that the results are not misleading due to any extreme cases.
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4.14 Model diagnostics 

 

On Page 4.9 we discussed the assumptions and issues involved with logistic 

regression and were relieved to find that they were largely familiar to us from when we 

tackled multiple linear regression! Despite this, testing them can be rather tricky. We 

will now show you how to perform these diagnostics using SPSS based on the model 

we used as an example on Page 4.11 (using the MLR LSYPE 15,000  dataset). 

 

Linearity of Logit 

This assumption is confusing but it is not usually an issue. Problems with the linearity 

of the logit can usually be identified by looking at the model fit and pseudo R2 statistics 

(Nagelkerke R2, see Page 4.12, Figure 4.12.4). The Hosmer and Lameshow test, 

which as you may recall was discussed on Page 4.12 and shown as SPSS output in 

Figure 4.12.5 (reprinted below) is a good test of how well your model fits the data. If 

the test is not statistically significant (as is the case with our model here!) you can be 

fairly confident that you have fitted a good model.  

Figure 4.14.1: Hosmer and Lameshow Test 

 

With regard to the Nagelkerke R2 you are really just checking that your model is 

explaining a reasonable amount of the variance in the data. Though in this case the 

value of .159 (about 16%) is not high in absolute terms it is highly statistically 

significant. 

 

Of course this approach is not perfect. Field (2009, p.296, see Resources) suggests 

an altogether more technical approach to testing the linearity of the logit if you wish to 

have more confidence that your model is not violating its assumptions. 

 

Independent Errors 

As we mentioned on Page 4.9 checking for this assumption is only really necessary 

when data is clustered hierarchically and this is beyond the scope of this website. We 

thoroughly recommend our sister site LEMMA (see Resources) if you want to learn 

more about this. 
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Multicollinearity 

It is important to know how to perform the diagnostics if you believe there might be a 

problem. The first thing to do is simply create a correlation matrix and look for high 

coefficients (those above .8 may be worthy of closer scrutiny). You can do this very 

simply on SPSS: Analyse > Correlate > Bivariate will open up a menu with a single 

window and all you have to do is add all of the relevant explanatory variables into it 

and click OK to produce a correlation matrix. 

 

If you are after more detailed colinearity diagnostics it is unfortunate that SPSS does 

not make it easy to perform them when creating a logistic regression model (such a 

shame, it was doing so well after including the „interaction‟ button).  However, if you 

recall, it is possible to collect such diagnostics using the menus for multiple linear 

regression (see Page 3.14)… because the tests of multicollinearity are actually 

independent of the type of regression model you are making (they examine only the 

explanatory variables) you can get them from running a multiple linear regression 

using the exact same variables as you used for your logistic regression. Most of the 

output will be meaningless because the outcome variable is not continuous (which 

violates a key assumption of linear regression methods) but the multicollinearity 

diagnostics will be fine! Of course we have discussed this whole issue in the previous 

module (Page 3.14). 

 

Influential Cases 

On page 4.11 we showed you how to request the model‟s residuals and the Cook’s 

distances as new variables for analysis. As you may recall from the previous module 

(Page 3.14), if a case has a Cook‟s distance greater than one it may be unduly 

influencing your model. Requesting the Cook‟s distance will have created a new 

variable in your dataset called COO_1 (note that this might be different if you have 

created other variables in previous exercises – this is why clearly labeling variables is 

so useful!). To check that we have no cases where Cook‟s distance is greater than 

one we can simply look at the frequencies: Analyse > Descriptive Statistics > 

Frequencies, add Coo_1 into the window, and click OK. Your output, terrifyingly, will 

look something like Figure 4.14.2 (only much, much longer!): 
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Figure 4.14.2: Frequency of Cook’s distance for model  

 

 

This is not so bad though – remember we are looking for values greater than one and 

these values are in order. If you scroll all the way to the bottom of the table you will 

see that the highest value Cook‟s distance is less than .014… nowhere near the level 

of 1 at which we need to be concerned. 

 

Finally we have reached the end of our journey through the world of Logistic 

Regression. Let us now take stock and discuss how you might go about pulling all of 

this together and reporting it.
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4.15 Reporting the results of logistic regression 

 

Our interest here has been not only in the association between ethnic group, social 

class, gender and exam achievement, but also how the relationship between ethnic 

group and exam achievement changes as we account for other explanatory variables 

(like SEC) and interaction effects. It is therefore appropriate to present the results not 

just for the last model but also for the preceding models. In a report we would present 

the results as shown in the table below.  

 

Model 1 shows the simple association between ethnic group and the fiveem outcome. 

Model 2 shows what happens when we add SECshort and gender to the model. 

Model 3 shows the significant interaction that exists between ethnic group and 

SECshort which needs to be taken into account. Summarising the results of the three 

models alongside each other in this way lets you tell the story of your analysis and 

show how your modeling developed. 

 

The elements of this table (Figure 4.15.1) that you choose to discuss in more detail in 

your text will depend on the precise nature of your research question, but as you can 

see it provides a fairly concise presentation of nearly all of the key relevant statistics. 
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Figure 4.15.1: reporting the results of logistic regression 

Model 1 Model 2 Model 3

Variable B SE OR B SE OR B SE OR

Constant -.100 .020 .91 -1.088 .043 .34 -1.184 .051 .31

Ethnic group

Mixed heritage -.142 .076 .87 -.133 .079 .88 -.079 .171 .92

Indian .458 *** .067 1.58 .678 *** .070 1.97 .784 *** .128 2.19

Pakistani -.447 *** .071 .64 -.138 .074 .87 .152 .125 1.16

Bangladeshi -.222 ** .079 .80 .223 ** .082 1.25 .544 *** .123 1.72

Black Caribbean -.626 *** .093 .53 -.632 *** .097 .53 -.246 .210 .78

Black African -.190 * .086 .83 -.010 .091 .99 .068 .156 1.07

Any other group .188 * .082 1.21 .335 *** .086 1.40 .605 *** .163 1.83

(base = White British)

Gender

Female .342 *** .034 1.41 .340 *** .035 1.40

(base= male)

Socio-Economic Class (SEC)

Missing .476 .053 1.61 .551 *** .071 1.74

High 1.585 .049 4.88 1.735 *** .061 5.67

Medium .705 .048 2.02 .818 *** .062 2.27

(base= low)

Interaction ethnic * SEC

Mixed heritage * missing SEC -.005 .251 1.00

Mixed heritage * high SEC -.129 .217 .88

Mixed heritage * medium SEC -.019 .235 .98

Indian * missing SEC -.065 .198 .94

Indian * high SEC -.159 .215 .85

Indian * medium SEC -.145 .179 .86

Pakistani * missing SEC -.328 .198 .72

Pakistani * high SEC -.519 * .237 .59

Pakistani * medium SEC -.418 * .187 .66

Bangladeshi * missing SEC -.320 .190 .73

Bangladeshi * high SEC -1.009 ** .366 .36

Bangladeshi * medium SEC -.711 ** .226 .49

Black Caribbean * missing SEC -.492 .318 .61

Black Caribbean * high SEC -.782 ** .263 .46

Black Caribbean * medium SEC -.065 .276 .94

Black African * missing SEC .288 .246 1.33

Black African * high SEC -.447 .231 .64

Black African * medium SEC .001 .273 1.00

Any other * missing SEC -.177 .241 .84

Any other * high SEC -.418 .239 .66

Any other * medium SEC -.453 .234 .64

-2LL 20652 19335 19291

x
2
=165, df=7,p<.001 x

2
=1317, df=4,p<.001 x

2
=44, df=21,p<.001

Nagelkerke R
2

1.5% 12.5% 12.9%

Hosmer & Lemeshow test p=1.00 p=0.026 p=0.535

Classification accuracy 54.7% 63.8% 64.0%  
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If you want to see an example of a published paper presenting the results of a logistic 

regression see: 

 Strand, S. & Winston, J. (2008). Educational aspirations in inner city schools. 

Educational Studies, 34, (4), 249-267. 

 

Conclusion 

We hope that now you have braved this module you are confident in your knowledge 

about what logistic regression is and how it works. We hope that you are confident 

about creating and interpreting your own logistic regression models using SPSS. Most 

of all we hope that all of the formula has not frightened you away… Logistic regression 

can be an extremely useful tool for educational research, as we hope our LSYPE 

example has demonstrated, and so getting to grips with it can be a very useful 

experience! Whew… why not have a little lie down (and perhaps a stiff drink) and then 

return to test your knowledge with our quiz and exercise?
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Exercise 

We have seen that prior attainment, specifically age 11 test score, is a strong 

predictor of later achievement. Maybe some of the ethnic, social class and gender 

differences in achievement at age 16 reflect differences that were already apparent in 

attainment at age 11? This would have substantive implications for education policy, 

because it would indicate that attention would need to focus as much on what has 

happened during the primary school years up to age 11 as on the effects of  education 

during the secondary school years up to age 16. 

 

Use the LSYPE 15,000 dataset  to work through each of the following questions. 

Answer them in full sentences with supporting tables or graphs where appropriate as 

this will help when you to better understand how you may apply these techniques to 

your own research. The answers are on the next page.  

 

Note: The variable names as they appear in the SPSS dataset are listed in brackets. 

We have also included some hints in italics. 

 

Question 1 

Exam score at age 11 is included in the LSYPE dataset as ks2stand. Before we 

include it in our model we need to know how it is related to our outcome variable, 

fiveem. Graphically show the relationship between ks2stand and fiveem. 

 

Use a bar chart. 

 

Question 2 

In this module we have established that ethnicity, Socio-economic class and gender 

can all be used to predict whether or not students pass 5 exams with grades A-C at 

age 16 (our trusty fiveem). Does including age 11 exam score (ks2stand) to this main 

effects model as an explanatory variable make a statistically significant contribution to 

predicting fiveem?  

 

Run a logistic regression model with these variables:  

Outcome: fiveem  
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Explanatory: ethnic, SECshort, gender, ks2stand 

 

Question 3 

Does adding age 11 score as an explanatory variable substantially improve the fit of 

the model? That is to say, does it improve how accurately the model predicts whether 

or not students achieve fiveem? 

 

Run the analysis again but this time with two blocks, including ethnic, SECshort 

and gender in the first block and ks2stand in the second. Examine the -2LL and 

pseudo-R2 statistics. 

 

Question 4 

Following on from question 3, what difference (if any) does adding age 11 score to the 

model make to the ethnic, gender and SEC coefficients? What is your interpretation of 

this result? 

 

No need to carry out further analysis – just examine the ‘Variables in the 

equation’ tables for each block. 

 

Question 5 

Is there an interaction effect between SEC and age 11 score? 

 

Run the model again but this time including a SECshort*ks2stand interaction. 

You may also wish to graph the relationship between age 11 exam score and 

SEC in the context of fiveem. 

 

Question 6 

Are there any overly influential cases in this model? 

 

You will need to get the Cook’s distances for each case. This may require you 

to re-run the model with different option selections. 
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Answers 

 

Question 1 

There is arguably more than one way to achieve this but we have gone for a bar graph 

which uses ks2stand as the category (X axis) and the mean fiveem score as the main 

variable (Y axis). If you have forgotten how to do this on SPSS we run through it as 

part of the Foundation Module. 

 

 

 

The mean fiveem score (which varies between 0 and 1) provides an indication of how 

many students passed five or more GCSEs (including maths and English) at each 

level of age 11 standard score. As you can see, the mean score is far lower for those 

with lower Age 11 scores but right up at the maximum of 1 for those with the highest 

scores. Note that the shape of the graph matches the „sigmoid‟ shape for binary 

outcomes which we have seen throughout this module. Based on this graph there 

appears to be strong evidence to suggest that age 11 is a good predictor of fiveem.   
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Question 2 

The table below shows that the explanatory variable for age 11 score is indeed a 

statistically significant predictor of fiveem (this can be ascertained from the „sig.‟ 

column). The „Exp(B)‟ column shows that the odds ratio is 1.273; meaning that a one 

unit change in age 11 score (an increase of 1 point) changes the odds of achieving 

fiveem increase by a multiplicative factor of 1.273. This is very substantial when you 

consider how large the range of possible age 11 scores is!  

 

 

 

See Page 4.5 if you want to review how to interpret logistic regression coefficients for 

continuous explanatory variables.
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Question 3 

In order to explore just how much impact adding age 11 exam score as an 

explanatory variable had on the model we re-ran the model but entered ks2stand as a 

second block (block 2). The classification Tables, Nagelkerke R2 and omnibus tests 

can then be compared across these blocks to assess the impact of accounting for 

prior achievement. 

 

 

 

As we have discussed on Page 4.12, the omnibus test tells us whether or not our 

model is better at predicting the outcome than the „baseline‟ model (which always 

predicts whichever of the two outcomes was more frequent in the data). The „Block‟ 

row tells us whether the new block significantly improves the number of correct 

predictions compared to the previous block. As you can see, the omnibus test table for 

Block 2 indicates that the addition of ks2stand does indeed improve the accuracy of 

predictions to a statistically significant degree (highlighted - „Sig‟ is <.05). The „Model‟ 

row test is also significant for both blocks, suggesting both are better at predicting the 

outcome than the baseline model. 
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The classification table (third table down) shows us just how much more accurately 

block 2 describes the data compared to block 1. The model defined as block 1 

correctly classifies 64.1% of cases – an improvement over the baseline model but still 

not great. The inclusion of ks2stand in block 2 increases the number of correct 

classifications substantially, to 80.9%. Finally, the Model Summary table helps to 

confirm this. The deviance (-2LL) is substantially lower for block 2 than for block 1 and 

the Nagelkerke pseudo R2 is .589 (59% of variance explained) for block 2 compared 

to .134 (13% of variance explained) for block 1.  Overall, age 11 score is clearly very 

important for explaining age 16 exam success!
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Question 4 

Below you will see the „Variables in the Equation‟ table for block 2 with the „sig‟ and 

Exp(B) columns from the same table for block 1. These are taken from the same 

SPSS output that we generated for question 3. Notice how in most cases the odds 

ratios [Exp(B)] are less in block 2 than they were in block 1. In addition, note that three 

explanatory variables are not statistically significant in both versions of the model. 

 

For example, as highlighted, students from a managerial or professional family 

background [SECshort(1)] are 4.7 times more likely to achieve fiveem than those from 

routine, semi-routine or unemployed family backgrounds for our model excluding age 

11 exam score. However, when we include age 11 score in block 2 the odds ratio is 

much lower: those from the wealthiest group are only 2.6 times more likely to achieve 

fiveem than those from the least wealthy group. This suggests that some the 

difference in success rate that appears to be due to social-class differences between 

students may in fact be explained by prior attainment. There may also be an 

interaction between prior attainment and social class. 
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Question 5 

Before exploring the interaction statistically it is worth first examining the relationship 

by looking at a line graph (though remembering that this graph does not account for 

the influence of other explanatory variables such as gender and ethnicity): 

 

 

 

As you may recall from Page 4.13, if the lines in this graph were approximately 

parallel we would expect there to be no interaction. Though this does not appear to be 

the case here the interaction is certainly not clear cut… you could argue that in the 

middle range of age 11 scores there us a clear ordering by affluence whereby the 

wealthiest group has the highest pass rate and the least wealthy the lowest. There are 

considerable fluctuations, particularly at the upper and lower ends of the age 11 score 

range, but these may not be as important as they appear given the large range of 

possible age 11 score values. 

 

Let us check the „Variables in the equation‟ for the logistic regression model when we 

include a ks2stand*SECshort interaction term. As you can see it doesn‟t actually help 
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that much! Though the significance level is greater than the commonly used 5% 

(p<.05) it is still less than 10%. The comparison between the lower SEC group and the 

intermediate SEC group (for White-British males only) is statistically significant at the 

.05 level. Deciding whether or not to include this interaction in your final model would 

be a judgment call. Given that the interaction effect does not appear to be particularly 

pronounced (the odds ratios are relatively small for the interactions and the odds 

ratios for the other variables have changed very little) we would probably not include it 

for the sake of parsimony.  
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Question 6 

As we saw on Page 4.14, cases that are having a particularly large influence on a 

model can be identified by requesting a statistic called Cook‟s distance. If this statistic 

is greater than 1 for a given case than that case may be a an outlier that is powerful 

enough to unduly influence a model (this is usually a more significant issue when you 

have a smaller sample. The table below shows the cooks distances produced by the 

interaction model we created in Question 5. We have completely removed the middle 

section because it is a horrendously long table. The Cook‟s distances are in the left-

most column and listed in numerical order. As you can see largest vale (at the bottom 

of the table) is .05158. This is much lower than a value of 1, which would usually be 

cause for concern. It seems that our model has no cases that are overly influential.  

 

 


