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Module 3 - Multiple Linear Regressions 

 

 

Start Module 3: Multiple Linear Regression 

Using multiple explanatory variables for more complex regression models. 
 

 

You can jump to specific pages using the contents list below. If you are new to this 

module start at the overview and work through section by section using the 'Next' 

and 'Previous' buttons at the top and bottom of each page. Be sure to tackle the 

exercises and the quiz to get a firm understanding. 

 

  

Objectives 

 Understand the strength of Multiple linear regression (MLR) in untangling 

cause and effect relationships 

 

 Understand how MLR can answer substantive questions within the field of 

educational research, using the LSYPE dataset for examples  

 

 Understand the assumptions underlying MLR and how to test they are met 

 

 Understand how to explore interaction effects between variables 

 

 Be able to implement and interpret MLR analyses using SPSS  

 

 Appreciate the applications of MLR in educational research, and possibly in 

your own research  
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3.1 Overview 
 
What is multiple linear regression? 
In the previous module we saw how simple linear regression could be used to predict 

the value of an outcome variable based on the value of a suitable explanatory 

variable. This is a useful technique but it is limited - usually a number of different 

variables will predict an outcome. For example, how good a student is at football is 

not just related to how many hours they practice a week. There is likely to be a 

relationship between ability and practice but discussing this in isolation from other 

important variables would most likely be a considerable over-simplification. The 

young player‟s spatial-awareness and physical fitness are also likely to contribute to 

their overall level of ability. Their ability may partly stem from personality traits that 

are related to confidence and teamwork.  

 

Of course we can go even further than this and say that sometimes the explanatory 

variables can influence each other as well as the outcome itself! For example, the 

impact of training on ability is bound to be dependent on the level of motivation the 

student feels. Perhaps they are turning up to training but not putting any effort in 

because they don‟t really like football! The real world is very complicated but luckily, 

with regression analysis, we can at least partially model that complexity to gain a 

better understanding. Multiple linear regression (MLR) allows the user to account for 

multiple explanatory variables and therefore to create a model that predicts the 

specific outcome being researched. Multiple linear regression works in a very similar 

way to simple linear regression.   

 

Consider the example of understanding educational attainment. It is well known that 

there is a strong and positive correlation between social class and educational 

attainment. There is evidence that pupils from some (though not all) minority ethnic 

groups do not achieve as well in the English education system as the majority White 

British group. However there is also a strong relationship between ethnic group and 

social class, with many minority ethnic groups experiencing higher socio-economic 

disadvantage than the White British group. It is therefore not possible to say from 

raw scores alone whether the lower attainment of some minority ethnic groups 

reflects something particular about belonging to that ethnic group or reflects the fact 

that some ethnic groups are particularly socially and economically disadvantaged. 

The relationship may look a little like the one presented below (Figure 3.1.1). 
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Figure 3.1.1: The third variable problem 

 
Multiple regression offers a way to address these issues. If we put all the variables 

we have into one analysis, we can assess the impact of one factor when another is 

taken into account. Thus multiple regression can allow us to assess the association 

of ethnicity and attainment after the variance in attainment associated with social 

class is taken into account. A wide range of further variables can also be included to 

build up highly detailed and complex models, e.g. family composition, maternal 

educational qualifications, students‟ attitude to school, parents educational 

aspirations for the student, etc. 

 

Running through the examples and exercises using SPSS 
As in the previous module, we provide worked examples from LSYPE which you can 

follow through using SPSS. You will find that we make a lot of transformations to the 

dataset as we perform the various analyses. It could get confusing! We recommend 

that you do not make the transformations yourself (one small error could dramatically 

alter your output) and instead use the pre-prepared variables in the MLR LSYPE 

15,000 dataset. However if you really do want to perform all of the transformations 

yourself you can always use the original LSYPE 15,000 data file. 

LSYPE 15,000     MLR LSYPE 15,000  
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3.2 The multiple regression model 

 

The simple linear regression model is based on a straight line which has the 

formula Ŷ = a + bX (where a is the intercept and b is the gradient). You'll be relieved 

to hear that multiple linear regression also uses a linear model that can be 

formulated in a very similar way! Though it can be hard to visualize a linear model 

with two explanatory variables, we've had a go at showing you what it may look like 

by adding a 'plane' on the 3D scatterplot below (Figure 3.2.1). Roughly speaking, 

this plane models the relationship between the variables. 

 

Figure 2.2.1: A multiple regression plane 

 
The plane still has an intercept. This is the value of the outcome when both 

explanatory variables have values of zero. However there are now two gradients, 

one for each of the explanatory variables (b1 on the x-axis and b2 on the z-axis). 

Note that these gradients are the regression coefficients (B in the SPSS output) 

which tell you how much change in the outcome (Y) is predicted by a unit change in 

that explanatory variable. All we have to do to incorporate these extra explanatory 

variables in to our model is add them into the linear equation:  

 

Ŷ = a + b1x1 + b2x2 

 

As before, if you have calculated the value of the intercept and the two b-values you 

can use the model to predict the outcome Ŷ (pronounced “Y Hat” and used to identify 

the predicted value of Y for each case as distinct from the actual value of Y for the 

case) for any values of the explanatory variables (x1 and x2). Note that it is very 

difficult to visualize a scatterplot with more than two explanatory variables (it involves 

picturing four or more dimensions - something that sounds a bit 'Twilight Zone' to us 

and causes our poor brains to shut down...) but the same principle applies. You 

simply add a new b value (regression coefficient) for each additional explanatory 

variable:  

 

Ŷ = a + b1x1 + b2x2 + b3x3 + ... + bnxn 
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Potentially you can include as many variables as you like in a multiple regression but 

realistically it depends on the design of your study and the characteristics of your 

sample. 

 

Multiple r and r2 
For simple linear regression it was important to look at the correlation between the 

outcome and explanatory variable (Pearson's r) and the r2 (the coefficient of 

determination) to ascertain how much of the variation in the outcome could be 

explained by the explanatory variable. Similar statistics can be calculated to describe 

multiple regression models. 

 

Multiple r is the equivalent of Pearson‟s r though rather than representing the 

magnitude and direction of a relationship between two variables it shows the 

strength of the relationship between the outcome variable and the values predicted 

by the model as a whole. This tells us how well the model predicts the outcome 

(sometimes researchers say how well the model fits the data). A multiple r of 1 

means a perfect fit while a multiple r of 0 means the model is very poor at predicting 

the outcome.  

 

The r2 can be interpreted in the exact same way as for simple linear regression: it 

represents the amount of variation in the outcome that can be explained by the 

model, although now the model will include multiple explanatory variables rather than 

just one. The diagram below (Figures 3.2.2 - lovingly prepared on 'MS Paint') might 

help you to visualize r2. Imagine the variance in the outcome variable 'Exam Grade' 

is represented  by the whole square and 'SES' (socio-economic status) and 'Attitude 

to School' are explanatory variables, with the circles representing the variance in 

exam grade that can be explained or accounted for by each. 

 

Figure 3.2.2: SES and Attitude to School predicting Exam Grade 
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In Figure 2.2.2 the square represents the total variation in exam score in our 

sample. The red circle represents the variance in exam score that can be predicted 

(we might say explained) by SES. Now we add a further variable, the blue circle - 

attitude to school. This variable also explains a large proportion of the variance in 

exam score. Because attitude to school and SES are themselves related, some of 

the variance in exam score that can be explained by attitude is already explained by 

SES (hatched red and blue area). However, attitude can also explain some unique 

variance in exam score that was not explained by SES. The red, blue and hatched 

areas combined represent r2, the total variance in exam score explained by the 

model. This is greater than would be accounted for by using either SES or attitude to 

school on its own.  

 
Methods of Variable Selection 
When creating a model with more than one explanatory variable a couple of 

complications arise. Firstly, we may be unsure about which variables to include in 

the model. We want to create a model which is detailed and accounts for as much of 

the variance in the outcome variable as possible but, for the sake of parsimony, we 

do not want to throw everything in to the model. We want our model to be elegant, 

including only the relevant variables. The best way to select which variables to 

include in a model is to refer to previous research. Relevant empirical and theoretical 

work will give you a good idea about which variables to include and which are 

irrelevant. 

 

Another problem is correlation between explanatory variables. When there is 

correlation between two explanatory variables it can be unclear how much of the 

variance in the outcome is being explained by each. For example, the hatched area 

in Figure 3.2.2 represents the variance in exam score which is shared by both SES 

and attitude to school. It is difficult to ascertain which variable is foremost in 

accounting for this shared variance because the two explanatory variables are 

themselves correlated. This becomes even more complicated as you add more 

explanatory variables to the model! 

 

It is possible to adjust a multiple regression model to account for this issue. If the 

model is created in steps we can better estimate which of the variables predicts the 

largest change in the outcome. Changes in r2 can be observed after each step to find 

out how much the predictive power of the model improves after each new 

explanatory variable is added. This means a new explanatory variable is added to 

the model only if it explains some unique variance in the outcome that is not 

accounted for by variables already in the model (for example, the blue or red section 

in Figure 2.2.2).  

 

SPSS allows you to alter how variables are entered and also provides options which 

allow the computer to sort out the entry process for you. The controls for this are 

shown below, but we'll go into the overall process of doing a multiple regression 

http://www2.warwick.ac.uk/fac/soc/wie/research-new/srme/glossary/?selectedLetter=R#r-squared
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analysis in more detail over the coming pages. For now it is worth examining what 

these different methods of variable selection are. 

 

Stepwise/Forward/Backward 

We've grouped these methods of entry together because they use the same basic 

principle. Decisions about the explanatory variables added to the model are made by 

the computer based entirely on statistical criteria. 

 

The Forward method starts from scratch - the computer searches from the specified 

list of possible explanatory variables for the one with the strongest correlation with 

the outcome and enters that first. It continues to add variables in order of how 

much additional (unique) variance they explain. It only stops when there are no 

further variables that can explain additional (unique) variance that is not already 

accounted for by the variables already entered. 

 

The Backward method does the opposite - it begins with all of the specified potential 

explanatory variables included in the model and then removes those which are not 

making a significant contribution.  

 

The Stepwise option is similar but uses both forward and backwards criteria for 

deciding when to add or remove an explanatory variable.  

 

We don't generally recommend using stepwise methods! As Field (2010) observes, 

they take important decisions away from the researcher by making decisions based 

solely on mathematical criteria (related entirely to your specific dataset), rather than 

on broader theory from previous research! They can be useful if you are starting 

from scratch with no theory but such a scenario is rare. 

 

Enter/Remove 

The 'Enter' method allows the researcher to control how variables are entered into 

the model. At the simplest level all the variables could be entered together in a single 

group called a „block‟. This makes no assumptions about the relative importance of 

each explanatory variable. However variables can be entered in separate blocks of 

explanatory variables. In this „hierarchical‟ regression method the researcher enters 

explanatory variables into the model grouped in blocks in order of their theoretical 

relevance in relation to the outcome. Decisions about the blocks are made by the 

researcher based on previous research and theoretical reasoning. Generally 

knowing the precise order of importance is not possible, which is why variables that 

are considered of similar importance are entered as a single block. Enter will include 

all variables in the specified block while Remove removes all variables in the 

specified block. 
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Some of this may sound confusing. Don't worry too much if you don't get it straight 

away - it will become clearer when you start running your own multiple regression 

analyses. The main thing is that you have some understanding about what each 

entry method does.  
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3.3 Assumptions of multiple linear regression 
 

The assumptions for multiple linear regression are largely the same as those for 

simple linear regression models, so we recommend that you revise them on Page 

2.6. However there are a few new issues to think about and it is worth reiterating our 

assumptions for using multiple explanatory variables. 

 

Linear relationship: The model is a roughly linear one. This is slightly 

different from simple linear regression as we have multiple explanatory 

variables. This time we want the outcome variable to have a roughly linear 

relationship with each of the explanatory variables, taking into account the 

other explanatory variables in the model.  

Homoscedasticity: Ahhh, homoscedasticity - that word again (just rolls off 

the tongue doesn't it)! As for simple linear regression, this means that the 

variance of the residuals should be the same at each level of the explanatory 

variable/s. This can be tested for each separate explanatory variable, though 

it is more common just to check that the variance of the residuals is constant 

at all levels of the predicted outcome from the full model (i.e. the model 

including all the explanatory variables). 

Independent errors: This means that residuals should be uncorrelated. 

 

Other important things to consider 
As with simple regression, the assumptions are the most important issues to 

consider but there are also other potential problems you should look out for: 

Outliers/influential cases: As with simple linear regression, it is important to 

look out for cases which may have a disproportionate influence over your 

regression model.  

Variance in all explanatory variables: It is important that your explanatory 

variables... well, vary! Explanatory variables may be continuous, ordinal or 

nominal but each must have at least a small range of values even if there are 

only two categorical possibilities.  

Multicollinearity: Multicollinearity exists when two or more of the explanatory 

variables are highly correlated. This is a problem as it can be hard to 

disentangle which of them best explains any shared variance with the 

outcome. It also suggests that the two variables may actually represent the 

same underlying factor.  

Normally distributed residuals: The residuals should be normally 

distributed.  

We‟ve moved through these issues quite quickly as we have tackled most of them 

before. You can review the simple linear regression assumptions on page 2.6 if you 

feel a little bit rusty. 

 

Checking the assumptions 
Here is an assumptions checklist for multiple regression: 
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1. Linear relationships, outliers/influential cases: This set of assumptions can be 

examined to a fairly satisfactory extent simply by plotting scatterplots of the 

relationship between each explanatory variable and the outcome variable. It is 

important that you check that each scatterplot is exhibiting a linear relationship 

between variables (perhaps adding a regression line to help you with this). 

Alternatively you can just check the scatterplot of the actual outcome variable 

against the predicted outcome. 

 

Now that you're a bit more comfortable with regression and the term residual you 

may want to consider the difference between outliers and influential cases a bit 

further. Have a look at the two scatterplots below (Figures 3.3.1 & 3.3.2): 

 

Figure 3.3.1: Scatterplot showing a 
simple outlier 

Figure 3.3.2: Scatterplot showing an 
outlier that is an influential case 

 

 

Note how the two problematic data points influence the regression line in differing 

ways. The simple outlier influences the line to a far lesser degree but will have a very 

large residual (distance to the regression line). SPSS can help you spot outliers by 

identifying cases with particularly large residuals. The influential case outlier 

dramatically alters the regression line but might be harder to spot as the residual is 

small - smaller than most of the other more representative points in fact! A case this 

extreme is very rare! As well as examining the scatterplot you can also use influence 

statistics (such as the Cook's distance statistic) to identify points that may unduly 

influence the model. We will talk about these statistics and how to interpret them 

during our example. 

 

2. Variance in all explanatory variables: This one is fairly easy to check - 

just create a histogram for each variable to ensure that there is a range of values or 

that data is spread between multiple categories. This assumption is rarely violated if 

you have created good measures of the variables you are interested in. 

 

3. Multicollinearity: The simplest way to ascertain whether or not your explanatory 

variables are highly correlated with each other is to examine a correlation matrix. If 

correlations are above .80 then you may have a problem. A more precise approach 
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is to use the collinearity statistics that SPSS can provide. The Variance inflation 

factor (VIF) and tolerance statistic can tell you whether or not a given explanatory 

variable has a strong relationship with the other explanatory variables. Again, we'll 

show you how to obtain these statistics when we run through the example! 

 

4. Homoscedasticity: We can check that residuals do not vary systematically with 

the predicted values by plotting the residuals against the values predicted by the 

regression model. Let's go into this in a little more depth than we did previously. We 

are looking for any evidence that residuals vary in a clear pattern. Let‟s look at the 

examples below (Figure 3.3.3). 

 

Figure 3.3.3: Scatterplot showing heteroscedasticity - assumption violated 

 
This scatterplot is an example of what a scatterplot might look like if the assumption 

of homoscedasticity is not met (this can be described as heteroscedasticity). The 

data points seem to funnel towards the negative end of the x-axis indicating that 

there is more variability in the residuals at higher predicted values than at lower 

predicted values. This is problematic as it suggests our model is more accurate 

when estimating lower values compared to higher values! In cases where the 

assumption of homoscedasticity is not met it may be possible to transform the 

outcome measure (see Extension A).  

 

Figure 3.3.4: Scatterplot showing homoscedasticity - assumption met 
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That's better! In Figure 3.3.4 the data points seem fairly randomly distributed with a 

fairly even spread of residuals at all predicted values.  

 

5. Independent errors: As we have stated before this assumption is rather tricky to 

test but luckily it only really applies to data where repeated measures have been 

taken at several time points. It should be noted that, as we said on Page 2.6, if there 

is a high degree of clustering then multi-level multiple regression may be 

appropriate. Using the SPSS complex samples module, mixed module or separate 

multi-levelling modelling packages such as MLWin may be the only solution (see 

page 2.6 for more detail). 

 

6. Normally distributed residuals: A histogram of the residuals (errors) in our 

model can be used to check that they are normally distributed. However it is often 

hard to tell if the distribution is normal from just a histogram so additionally you 

should use a P-P plot as shown below (Figure 3.3.5): 

 

Figure 3.3.5: P-P plot of standardized regression residual 

 
As you can see the expected and observed cumulative probabilities, while not 

matching perfectly, are fairly similar. This suggests that the residuals are 

approximately normally distributed. In this example the assumption is not violated. 
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A Note on Sample Size 
The size of the data set that you're analyzing can be very important to the regression 

model that you can build and the conclusions that you can draw from it. In order for 

your regression model to be reliable and capable of detecting certain effects and 

relationships you will need an appropriate sample size. There is a general rule of 

thumb for this:  

 

For each explanatory variable in the model 15 cases of data are required  

(see Field, 2009, pp. 645-647). 

 

This is useful BUT it should be noted that it is an oversimplification! A good sample 

size depends on the strength of the effect or relationship that you're trying to detect - 

the smaller the effect you‟re looking for the larger the sample you will need to detect 

it! For example, you may need a relatively small sample to find a statistically 

significant relationship between age and reading ability. Reading ability usually 

develops with age and so you can expect a strong association will emerge even with 

a relatively small sample. However if you were looking for a relationship between 

reading ability and something more obscure, say time spent watching television, 

you would probably find a weaker correlation. To detect this weaker relationship and 

be confident that it exists in the actual population you will need a larger sample size.  

 

On this website we're mainly dealing with a very large dataset of over 15,000 

individual participants. Though in general it can be argued that you want as big a 

sample as practically possible some caution is required when interpreting data from 

large samples. A dataset this large is very likely to produce results which are 

'statistically significant'. This is because the sheer size of the sample overwhelms the 

random effects of sampling - the more of the population we have spoken to the more 

confident we can feel that we have adequately represented them. This is of course a 

good thing but a 'statistically significant' finding can have the effect of causing 

researchers to overemphasise their findings. A p-value does not tell the researcher 

how large an effect is and it may be that the effect is statistically significant but so 

small that it is not important. For this reason it is important to look at the effect size 

(the strength) of an effect or relationship as well as whether or not it is statistically 

likely to have occurred by chance in a sample. Of course it is also important to 

consider who is in your sample. Does it represent the population you want it to? 

 

If you would like more information about sample size we recommend that you check 

out Field (2009, p.645). There is also software that will allow you to estimate quite 

precisely the sample size you need to detect a difference of a given size with a given 

level of confidence. One example is the dramatically named „GPower‟, which can be 

downloaded for free (the link is in our resources). With this in mind let us put our 

new knowledge on regression analysis into practice by running through an example! 

http://www2.warwick.ac.uk/fac/soc/wie/research-new/srme/glossary/?selectedLetter=P#p-value
http://www2.warwick.ac.uk/fac/soc/wie/research-new/srme/glossary/?selectedLetter=E#effect-size
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3.4 Using SPSS to model the LSYPE data 

 

In our example of simple linear regression in the previous module we found that prior 

academic achievement (age 11) is a good predictor of future academic achievement 

(age 14). This seems reasonable but surely there is more to it than that! The socio-

economic class (SEC) of the parents is known to be related to students‟ academic 

achievement. The media talk about a gender gap in exam scores and inequalities 

between different ethnic groups. If we knew about these other variables could we 

improve the predictive power of our model? Multiple regression provides us with the 

tools we need to explore these questions! 

 

Figure 3.4.1: Factors which may influence Age 14 exam score 

 
 

The rest of this module is largely dedicated to an example which will build these 

variables into our multiple regression model and improve our understanding of the 

relationship between these factors and educational achievement. Over the next few 

pages we will be building up a model for predicting achievement during age 14 (KS3) 

exams. There will be seven different versions of the model as we build up your 

knowledge and refine the structure of our regression model with each new variable.  

 

We will show you how to run this process on SPSS. Why not follow us through using 

the LSYPE MLR 15,000  dataset? The variables are already there for you so you 

will be able to run the analyses without creating the new variables (you‟ll see what 

we mean by this when we get started). Come on, it will be fun. Like a convoy. 

 

Though it is not advisable to use anything other than a continuous variable for an 

outcome variable in multiple linear regression it is possible to use ordinal and 

nominal variables as explanatory variables. Before we can do this the data needs to 
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be set up in a specific way on SPSS. The ordinal and nominal variables must be 

coded as numbers so that SPSS can understand them.  

 

Ordinal variables 
The process for ordinal variables is straight forward as it simply means ranking the 

categories.  For example, for socio-economic class (SEC) data provided by parents 

on their occupation and employer have been coded using the Office for National 

Statistics socio-economic classification (for further details on this coding system see 

our Resources). Our measure of SEC has eight categories arranged in rank order 

with „Higher managerial and professional occupations‟ coded as 1 through to 'Never 

worked or long-term unemployed' coded as 8.  

 

While SEC is usually treated as an ordinal rather than a continuous variable, for the 

purpose of this example we will initially treat SEC as if it were a scale. However, 

ordinal variables should only be used in this way when there are at least five 

categories (levels) within the variable, a reasonable spread of cases across the 

levels, and a roughly linear relationship with the outcome. All these conditions are 

met for SEC (see Figure 3.4.2 and later Figure 3.5.2). Regression is a very „robust‟ 

procedure when it comes to treating ordinal variables as continuous explanatory 

variables so given these conditions are met this is permissible, although we will 

discuss some limitation to treating ordinal variables in this way later in the analysis. 

 

Figure 3.4.2: Frequency table for SEC of the home 

 
Frequency Percent Valid Percent 

Valid 1 Higher Managerial and professional occupations 1567 9.9 12.2 

2 Lower managerial and professional occupations 3083 19.5 24.0 

3 Intermediate occupations 932 5.9 7.3 

4 Small employers and own account workers 1672 10.6 13.0 

5 Lower supervisory and technical occupations 1454 9.2 11.3 

6 Semi-routine occupations 1637 10.4 12.8 

7 Routine occupations 1409 8.9 11.0 

8 Never worked/long term unemployed 1075 6.8 8.4 

Total 12829 81.4 100.0 

Missing 0 missing 2941 18.6  
Total 15770 100.0  

 
Nominal variables - simple dichotomies 
Some nominal variables are simple dichotomies which mean they have only two 

mutually exclusive categories (e.g. you are either eligible for a free school meal or 

you are not – you can only belong to one of two categories). These are called 

dichotomous or binary variables because they have only two categories. Adding 

such variables to your regression module is fairly simple because we can simply give 

each category a numeric code (e.g. for gender code males as '0' and females as '1'). 
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The output will represent a direct comparison between the two categories – this will 

become clearer when we run our example!  

 

Nominal variables - multiple categories 
When you have nominal variables with multiple categories that cannot be ranked it 

requires a slightly more complicated approach. How do you numerically code a 

variable like school type? We can assign numbers to different school types, e.g. 0 for 

'community schools', 1 for 'independent schools', 2 for 'foundation schools' 3, for 

'voluntary-aided schools' and so on. However these numbers do not represent more 

or less of something as they do with SEC. In this case it is necessary to set up a 

number of comparisons such that a reference category (say 'community schools') is 

compared to each of the other categories. This means you have to create a series of 

new binary variables (for example 'independent school‟, 'foundation school‟ and 

„Voluntary-aided school‟) where each case is coded '1' if it is from that particular 

school type and coded „0‟ otherwise. This procedure is often called setting up 

dummy variables. There should be one less dummy variable than the number of 

categories in the variable.  So if we had four types of school we would need to 

choose one to be our base or reference category (e.g. community schools) and then 

create three dummy variables to compare each of the remaining categories 

(independent, foundation and voluntary-aided) to this reference category. 

 

This is easiest to understand with examples. Over the next few pages we will 

introduce a variable of each of these types into our model.  
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3.5 A model with a continuous explanatory variable (Model 1) 
 
Rather than start by throwing all possible explanatory variables into the regression 

model let‟s build it up in stages. This way we can get a feel for how adding different 

variables affects our model.  

 

Our Outcome variable is ks3stand - the standard score in national tests taken at the 

end of Key Stage 3 (KS3) at age 14, which we used as the outcome measure in the 

previous module. To begin our analysis we will start with Social Economic Class 

(SEC) as an explanatory variable. SEC represents the socio-economic class of the 

home on a scale of '1' (Higher Managerial and professional occupations) to '8' 

(Never worked/long term unemployed). There is a strong relationship between SEC 

and mean age 14 score, as shown in Figures 3.5.1 and 3.5.2 below. 

 

Table 3.5.1: Mean age 14 score by SEC 

Social class (SEC) Mean N SD 

1 Higher Managerial & professional occupations 7.30 1378 9.761 

2 Lower managerial & professional occupations 3.70 2851 9.179 

3 Intermediate occupations 1.05 899 8.813 

4 Small employers and own account workers .51 1585 9.287 

5 Lower supervisory and technical occupations -1.14 1421 8.803 

6 Semi-routine occupations -2.70 1580 8.823 

7 Routine occupations -4.00 1367 9.063 

8 Never worked/long term unemployed -6.19 1019 9.162 

Total .39 12100 9.936 

 

Figure 3.5.2: Mean age 14 score by SEC 
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We will start by entering SEC in our regression equation. Take the following route 

through SPSS: Analyse> Regression > Linear. This is the exact same route which 

we took for simple linear regression so you may well recognize the pop-up window 

that appears. The variable ks3stand goes in the dependent box and the variable sec 

is placed in the independents box. Note that we have selected „Enter‟ as our Method. 

 

 
 

We are not going to run through all of the diagnostic tests that we usually would this 

time – we will save that for when we add more variables over the coming pages! 

Let‟s just click OK as it is and see what SPSS gives us. 

 

SPSS output for multiple linear regression  
In this basic analysis SPSS has only provided us with four tables. The first simply 

tells us which variables we have included in the model so we haven‟t reproduced 

that here. The other three provide more useful information about our model and the 

contribution of each of our explanatory variables. The process of interpreting most of 

these statistics is the same for multiple linear regression as we saw for simple linear 

regression in Module 2.  

 

Figure 3.5.3: Multiple r and r2 for model 
Model 

R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 
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a
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The Model Summary (Figure 3.5.3) offers the multiple r and coefficient of 

determination (r2) for the regression model. As you can see r2 = .151 which indicates 

that 15.1% of the variance in age 14 standard score can be explained by our 

regression model. In other words the success of a student at age 14 is strongly 

related to the social economic class of the home in which they reside (as we saw in 
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Figure 3.5.2). However there is still a lot of variation in outcomes between students 

that is not related to SEC. 

 

Figure 3.5.4: ANOVA for model fit 
Model Sum of Squares df Mean Square F Sig. 

1 Regression 180687.920 1 180687.920 2156.304 .000
a
 

Residual 1013754.450 12098 83.795   
Total 1194442.370 12099    

 

Whether or not our regression model explains a statistically significant proportion of 

the variance is ascertained from the ANOVA table (Figure 3.5.4), specifically the F-

value (penultimate column) and the associated significance value. As before, our 

model predicts the outcome more accurately than if we were just using the mean to 

model the data (p < .000, or less than .0005, remembering that SPSS only rounds to 

3 significant figures).  

 

Figure 3.5.5: Coefficients for model 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 7.579 .176  43.120 .000 

sec Socio-economic 
class of the home 

-1.725 .037 -.389 -46.436 .000 

 

The Coefficients table (Figure 3.5.5) gives the Constant or intercept term and the 

regression coefficients (b) for each explanatory variable. The constant value (7.579) 

represents the intercept, which is the predicted age 14 score when SEC=0 (note that 

SEC is never actually 0 in our data where the values of SEC range from 1-8, the 

constant is just important for the construction of the model).  The other value here is 

the regression coefficients (b) for SEC. This indicates that for every unit increase in 

SEC the model predicts a decrease of -1.725 in age 14 standard score. This may 

sound counter-intuitive but it actually isn‟t – remember that SEC is coded such that 

lower values represent higher social class groups (e.g. 1 = „Higher Managerial and 

professional‟, 8 = „Never worked/long term unemployed‟).  

 

We can use the regression parameters to calculate the predicted values from our 

model, so the predicted age 14 score when SEC=1 (higher managerial) is 7.579 + 

(1*-1.725) = 5.85. By comparison the predicted age 14 score when SEC=8 (long 

term unemployed) is 7.579 + (8*-1.725) = -6.22. There is therefore roughly a 12 

score point gap between the highest and lowest SEC categories, which is a 

substantial difference. Finally the t-tests and „sig.‟ values in the last two rows tell us 

that the variable is making a statistically significant contribution to the predictive 

power of the model – it appears that SEC is since the t-statistic is statistically 

significant (p < .000).  
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3.6 Adding dichotomous nominal explanatory variables (Model 2) 
 
As discussed on the previous page, SEC can reasonably be treated as a scale, but 

what do we do with variables which are nominal? What if the categories cannot be 

placed in a rank order? Let us take the example of gender. Gender is usually a 

dichotomous variable – participants are either male or female. Figure 3.6.1 displays 

the mean age 14 standard scores for males and females in the sample. There is a 

difference of a whole score point between the scores of males and females, which 

suggests a case for adding gender to our regression model. 

 
Figure 3.6.1: Mean age 14 score by gender 

 Mean KS3 score N Std. Deviation 

0 Male -.45 7378 10.174 

1 Female .62 7140 9.710 

Total .08 14518 9.963 

 

Take the following route through SPSS: Analyse> Regression > Linear. Add 

gender to the independents box – we are now repeating the multiple regression we 

performed on the previous page but adding gender as an explanatory variable. Do 

not worry about all of the extra options and assumptions yet – we will come to that 

later! Just click OK. 

 

 
 

You will be starting to get familiar with these three tables now.  

 
Figure 3.6.2: Multiple r and r2 for model 

Model 
R R Square 

Adjusted R 
Square 

Std. Error of the 
Estimate 
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a
 .155 .155 9.113 
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Our Model Summary (Figure 3.6.2) tells us that our new model now has r2 = .155 

which suggests that 15.5% of the total variance in age 14 score can be explained. 

This is only very slightly more than the previous model (15.1%). But has the inclusion 

of gender made a significant contribution to explaining age 14 test score? We 

evaluate this through inspecting the coefficients table.  

 

Figure 3.6.3: Coefficients for model 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) 7.032 .194  36.202 .000 

Socio-economic class of 
the home 

-1.722 .037 -.389 -46.172 .000 

Gender 1.198 .167 .060 7.169 .000 

 

The Coefficient table (Figure 3.6.3) provides us with a fresh challenge: how do we 

interpret the b-coefficient for gender? Actually it is delightfully simple! If you recall the 

code „0‟ was used for males and „1‟ for females. The b-coefficient tells us how much 

higher or lower the category coded 1 (females) score in direct comparison to the 

category coded 0 (males) when the other variables in the model (currently SEC) are 

controlled (held fixed). The B coefficient for gender indicates that females score on 

average 1.2 standard marks higher than males, whatever the SEC of the home. The 

t-tests indicate that both explanatory variables are making a statistically significant 

contribution to the predictive power of the model. 

 

What are the relative strengths of SEC and gender in predicting age 14 score? We 

cannot tell this directly from the coefficients since these are not expressed on a 

common scale. A one unit increase in SEC does not mean the same thing as a one 

unit increase in gender. We can get a rough estimate of their relative size by 

evaluating the difference across the full range for each explanatory variable, so the 

range for SEC is 7*-1.72 or 12.0 points, whereas the range for gender is just 1.2 

points (girls versus boys). Another way of judging the relative importance of 

explanatory variables is through the Beta (β) weights in the fourth column. These are 

a standardised form of b which range between 0 and 1 and give a common metric 

which can be compared across all explanatory variables. The effects of SEC is large 

relative to gender, as can be seen by the relative difference in beta values (-.389 

versus .060). Note you ignore the sign since this only indicates the direction, whether 

the explanatory variable is associated with an increase or decrease in outcome 

scores, it is the absolute value of Beta which is used to gauge its importance. You 

will remember this from comparing the strength of correlation coefficients which we 

completed in the Simple Linear Regression module (see page 2.4). The results 

indicate that SEC is a more powerful predictor of age 14 score than gender, but both 

make a contribution to the explanation of variance in age 14 score.  
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3.7 Adding nominal variables with more than two categories  
(Model 3) 
 
In the section above we added gender to our model and discussed how we interpret 

the b coefficient as a direct comparison of two categories. But what do we do when 

we have more than two categories to compare? Let‟s take a look at the example of 

ethnicity. Figure 3.7.1 plots the mean age 14 score for each ethnic group. This 

shows that Pakistani, Bangladeshi, Black African and Black Caribbean students on 

average have a mean score around 3 points lower than White British students. 

Ethnic group is definitely a candidate to include as an explanatory variable in our 

regression model. 

 

Figure 3.7.1: Bar chart of mean age 14 score by ethnic group 

 
On page 3.4 we mentioned the use of „dummy variables‟ as a method for dealing 

with this issue. Where we have nominal variables with more than two categories we 

have to choose a reference (or comparison) category and then set up dummy 

variables which will contrast each remaining category against the reference 

category. See below for an explanation of how the ethnic group variable is coded 

into seven new dichotomous „dummy‟ variables. 
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Nominal variable with more than two categories: Ethnicity 

This requires the use of dummy variables. The variable is originally coded '0' to '7' 

with each code representing a different ethnic group. However we cannot treat this 

as an ordinal variable - we cannot say that 'Black Caribbean (coded '5') is 'more' of 

something than White British (coded '0'). What we need to do is compare each 

ethnic group against a reference category. The most sensible reference category is 

'White British' (because it contains the largest number of participants), so we want to 

contrast each ethnic group against 'White British'. We do this by creating seven 

separate variables, one for each minority ethnic group (dummy variables). The group 

we leave out (White British) will be the reference group („0‟ code). 

 

This has already been done in the dataset so why not take a look. The new variable 

'e1' takes the value of '1' if the participant is of 'Mixed Heritage' and '0' otherwise, 

while 'e2' takes the value of '1' if the pupil is Indian and '0' otherwise, and so on. 

 

We have already coded the dummy variables for you but it is important to know how 

it is done on SPSS. You can use the Transform > Recode into new variable route 

to create each new variable individually. We have discussed the use of Transform 

for creating new variables briefly in our Foundation Module. There are hundreds of 

options through this menu and we think the best way to learn is to have a play with it! 

The alternative to generating each dummy variable individually is using syntax. We 

have included the syntax for the recoding of the ethnicity variable below! You don‟t 

need to use the syntax if you don‟t want to as we have already created the variables 

in our datasets but it is useful to know how to generate them. 

 

SYNTAX ALERT!!! 

RECODE Ethnic (1=1)(else=0) into e1. 

RECODE Ethnic (2=1)(else=0) into e2. 

RECODE Ethnic (3=1)(else=0) into e3. 

RECODE Ethnic (4=1)(else=0) into e4. 

RECODE Ethnic (5=1)(else=0) into e5. 

RECODE Ethnic (6=1)(else=0) into e6. 

RECODE Ethnic (7=1)(else=0) into e7. 

VAR LABELS 

 e1  "Mixed heritage"  e2  "Indian"  e3  "Pakistani"  e4  "Bangladeshi"  e5  "Black 

Caribbean"  e6  "Black African"  e7  "Any other ethnic group". 

 

Coding variables through the SPSS menu options is relatively easy once you are 

used to the software, but can be very time-consuming. Using Syntax is a good way 

of saving time! 

 

We can now include our dummy variables for ethnic group (e1 through to e7). Take 

the same familiar path through SPSS: Analyse> Regression > Linear. Add 
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ks3stand as the Dependent and move all of the relevant variables into the 

Independents box: sec, gender, e1, e2, e3, e4, e5, e6 and e7.  

 

 
Click OK when you‟re ready. 

 

You will see that the new model has improved the amount of variance explained with 

r2 = .170, or 17.0% of the variance (Figure 3.7.2), up from 15.5% in the previous 

model. We won‟t print the ANOVA table again but it does show that the new model 

once again explains more variance than the baseline (mean) model to a statistically 

significant level.   

Figure 3.7.2: Model 3 summary 
Model 
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More interesting for our understanding and interpretation is the coefficients table 

(Figure 3.7.3). 

 

Figure 3.7.3: Regression coefficients for model 3 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 7.180 .197  36.412 .000 

sec Socio-economic class -1.674 .038 -.378 -43.595 .000 

gender Gender 1.234 .166 .062 7.439 .000 

e1 Mixed heritage -.376 .375 -.008 -1.002 .316 

e2 Indian 1.400 .338 .035 4.142 .000 

e3 Pakistani -2.343 .361 -.056 -6.494 .000 

e4 Bangladeshi -.465 .432 -.009 -1.076 .282 

e5 Black Caribbean -4.251 .436 -.082 -9.746 .000 

e6 Black African -3.294 .437 -.064 -7.539 .000 

e7 Any other ethnic group .199 .433 .004 .459 .646 

 

Firstly a quick glance at the b coefficients (Figure 3.7.3) shows SEC and gender are 

still significant predictors, with a decrease of -1.674 score points for every unit 

increase in SEC and with girls scoring 1.234 points higher than boys. The b-

coefficients for the ethnic dummy variables can be interpreted in a similar way to the 
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interpretation of gender. The coefficients represent the difference in age 14 test 

score between being in the specified category and being in the reference category 

(White British) when the other variables are all controlled. For example, the model 

indicates that Indian students achieve 1.40 more standard score points than White 

British students, while Black Caribbean student achieve -4.25 less standard score 

points than White British students. Remember these coefficient are after controlling 

for SEC and gender. 

 

Though it is clear that SEC score is the most important explanatory variable, looking 

down the t and sig columns tells us that actually most of the ethnic dummy variables 

make a statistically significant contribution to predicting age 14 score (p < .05). After 

we have controlled for SEC and gender, there is no statistically significant evidence 

that students of Mixed Heritage, Bangladeshi and Any Other ethnic group achieve 

different results to White British students. However on average Indian students score 

significantly higher than White British students while Pakistani, Black Caribbean and 

Black African pupils score significantly lower (p<.000). 
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3.8 Predicting scores using the Regression Model 
 
Let‟s look at how we can use model 3 to predict the score at age 14 that a given 

student from a specific background would be expected to achieve. Take this 

opportunity to look back at the coefficient table for model 3 (Figure 3.7.3, Page 3.7). 

The intercept is 7.18, this is the predicted age 14 exam score for our reference 

group, which is where SEC=0, gender=0 (boy) and ethnicity=0 (White British). The 

coefficient for SEC shows that each unit increase in SEC is associated with a 

decrease of about -1.67 score points in test score. The coefficients for gender shows 

the average difference between girls and boys, and the coefficients for each ethnic 

group shows the average difference between the relevant ethnic group and White 

British students. There is no interaction term (more on this on Page 3.11) so the 

model assumes the effect of gender and ethnicity are the same at all levels of SEC. 

For example, whatever the SEC of the home or whatever ethnic group, girls on 

average score 1.234 points higher than boys. Equally whatever the SEC of the home 

or gender of the student, Black Caribbean students score 4.25 points below White 

British students of the same gender. 

 

So let‟s see how the predicted values are calculated. This may initially seem quite 

complicated but what we are doing is actually very straightforward. There are a total 

of 10 terms in our regression equation for Model 3. There is the intercept, which is 

constant for all cases, and there are nine regression coefficients:  a coefficient for 

SEC, a coefficient for gender and seven coefficients for ethnicity, one for each ethnic 

group. As we described on Page 3.2 in standard notation the calculation of the 

predicted age 14 score (labelled as Ŷ) for any case would be written as: 

 

Ŷ = a + b1x1 + b2x2 + b3x3 + ... + b9x9 

  

Where Ŷ = the predicted age 14 score; a= the intercept;  b1= the regression 

coefficient for variable 1;  x1= the value of variable 1, b2= the regression coefficient 

for variable 2;  x2= the value of  variable 2…. and so on through to b9 and x9 for 

variable 9. We can calculate the predicted value for any case simply by typing in the 

relevant quantities (a, b1, x1, b2, x2 …etc) from the regression equation. Four examples 

are shown below. 

 

For a White British, boy, from SEC=1 (higher managerial & professional home) 

The predicted value would be: 

   Ŷ = intercept + (1*SEC coefficient) 

   Ŷ = 7.18 + (1*-1.674) = 5.51.  

Because gender=0 (male) and ethnic group=0 (White British) there is no contribution 

from these terms. 

 

For a White British, girl, from SEC=1  

The predicted value would be: 
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   Ŷ = intercept + (1*SEC coefficient) + (Gender coefficient) 

   Ŷ = 7.18 + (1*-1.674) + (1.234) = 6.74.   

Again, because ethnic group=0 there is no contribution from the ethnic terms. 

 

For a Black Caribbean, boy, from SEC=1 

The predicted value would be: 

   Ŷ = intercept + (1*SEC coefficient) + (Black Caribbean coefficient) = 

   Ŷ = 7.180 + (1*-1.674) + (-4.251) = 1.26.  

Because gender=0 there is no contribution from this term. 

 

For a Black Caribbean, girl, from SEC=1 

The predicted value would be: 

  Ŷ = intercept + (1*SEC coefficient) + (Gender coefficient) +  (Black Caribbean 

coefficient) 

  Ŷ = 7.180 + (1*-1.674) + (1*1.234) + (-4.251) = 2.49.  

 

Once you get your head around the numbers what we are doing is actually very 

straightforward.  

 

The key point to notice is that whatever the value of SEC, girls are always predicted 

to score 1.234 points higher than boys. Equally whatever the SEC of the home, 

Black Caribbean students are always predicted to score 4.25 point below White 

British students of the same gender.  

 

Rather than manually calculating the predicted values for all possible combinations 

of values, when specifying the multiple regression model we can ask SPSS to 

calculate and save the predicted values for every case. These predicted values are 

already saved in the LSYPE 15,000 MLR  dataset (they are called PRE_1). If you 

want to do this yourself can rerun the analysis for Model 3 as described on Page 3.7 

using the LSYPE 15,000  dataset but this time also click on the save button: 
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Add a tick in the „Predicted values (unstandardized)‟ option in the pop-up box. This 

will create a new variable in your SPSS file called PRE_1 which will hold the 

predicted age 14 score for each student, as calculated by the model.  

 

We can then plot these values to give us a visual display of the predicted variables. 

Let us look at the relationship between ethnic group and SEC. We will just plot the 

predicted values for boys since, as we have seen, the pattern of predicted values for 

girls will be identical except that every predicted value will be 1.234 points higher 

than the corresponding value for boys. We can plot the graph using the menu 

options as shown in Module 1, or we can do this more simply using syntax:  

 

SYNTAX ALERT! 

TEMPORARY. 

SELECT IF gender=0. 

GRAPH  /LINE(MULTIPLE) MEAN (pre_1) BY SEC by Ethnic. 

 

The results are shown in Figure 3.8.1. 

 

Figure 3.8.1: Regression lines for ethnic group, SEC and age 14 attainment 

 
 

The important point you should notice is that the fitted regression lines for each 

ethnic group have different intercepts but the same slope, i.e. the regression lines 

are parallel. There are two equivalents ways of expressing the figure. We can say 

that the effect of SEC on attainment is the same for all ethnic groups, or we can say 
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the effect of ethnicity on attainment is the same for all social classes. It‟s the same 

thing (like two sides of a coin).  

 

We will return to this type of line graph when we start to explore interaction effects on 

Page 3.11 but for now let‟s discuss ways of refining our existing model further.  



31 

 

3.9 Refining the model – treating ordinal variables as a set of 
dummy variables (Model 4) 
 
Minimising the effect of missing data  
So far we have treated SEC as a continuous variable or scale. What are the 

implications of having done this? Treating a variable as a scale means that any case 

with a missing value on the variable is lost from the analysis. The frequency table for 

SEC was shown in Figure 3.4.2. A total of 2941 cases (18.6%) were missing a value 

for SEC, which is a high level of data loss. 

 

One way of coping with this is to recode SEC into dummy variables, as we did with 

ethnic group (Page 3.7), and to explicitly include the „missing‟ values as an extra 

category. This has several advantages, it:  

 Prevents the loss of data that would come from omitting all cases with missing 

values, as happens when SEC is treated as a scale variable (excluding 

missing data in this way is known as „Listwise‟ deletion) 

 Allows for the direct modelling of missing data rather than imputing missing 

values, for example by mean substitution, which has its own interpretative 

problems 

 Allows for non-linearity in the relationship between the ordinal categories and 

student attainment 

 Can simplify the interpretation of the relationship between the explanatory 

variable and the outcome, since we can directly contrast against a reference 

category (e.g. compare all SEC categories against long term unemployed) 

 Can ensure a consistent base in terms of the sample size across a range of 

hierarchical regression models by retaining all cases (including those with 

missing values) as new explanatory variables are added. 

 

We used the following syntax to change SEC into a series of dummy variables. You 

don‟t need to do this though as we have already prepared the dummy variables for 

you in the LSYPE 15000 MLR  file. Aren‟t we nice? 
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SYNTAX ALERT!!! 

More syntax for your enjoyment! Are you beginning to see how it works? 

 

RECODE sec (1=1)(else=0) into sc1. 

RECODE sec (2=1)(else=0) into sc2. 

RECODE sec (3=1)(else=0) into sc3. 

RECODE sec (4=1)(else=0) into sc4. 

RECODE sec (5=1)(else=0) into sc5. 

RECODE sec (6=1)(else=0) into sc6. 

RECODE sec (7=1)(else=0) into sc7. 

RECODE sec (missing=1)(else=0) into sc0. 

 

VARIABLE LABELS  

 sc1  ' Higher managerial & professional' 

 sc2  ' Lower managerial & professional' 

 sc3  ' Intermediate occupations' 

 sc4  ' Small employers & own account workers' 

 sc5  „Lower supervisory & technical occupations' 

 sc6  ' Semi-routine occupations' 

 sc7  ' Routine occupations' 

 sc0  ' SEC missing'. 

 

Note that the variable we have not created a dummy for (long-term unemployed) will 

be our reference category in the analysis. Let us repeat our last model but replace 

SEC with the eight terms sc0 to sc7. Repeat the regression we did on Page 3.7 

using ks3stand as the Dependent variable and gender, e1 – e7 and sc0 – sc7 as the 

independent variables. Rather than assessing the effect of SEC as a regression 

coefficient we get a direct measure of how each category (including our „missing 

cases‟ category) contrasts with the base category (long term unemployed).  

 

Figure 3.9.1 presents the model summary and the ANOVA table. From the Model 

Summary we see that the model r2 is 15.1%. This is lower than for model 3 where 

the model accounted for 17.0% of the variance. However this reflects two factors: the 

change from treating SEC as a scale variable to modelling it as a set of dummy 

variables and the increase in sample size associated with including the previously 

omitted 2,900 or so cases. We can see from the ANOVA table that we are including 

14,518 cases in this analysis (the total df shows the number of cases - 1), rather 

than the 12,100 cases included in model 3. We will not pursue the relative 

contribution of these two factors here, since the increase in sample size is reason 

enough for preferring the treatment of SEC as a set of dummy variables. 
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Figure 3.9.1: model summary and the ANOVA table 
Model R R Square Adjusted R Square Std. Error of the Estimate 
d
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a
 .151 .150 9.186 

 
 

ANOVA
b
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 217347.017 16 13584.189 160.998 .000
a
 

Residual 1223522.937 14501 84.375   
Total 1440869.954 14517    

 

Figure 3.9.2 shows the regression coefficients from the model. 

 

Figure 3.9.2: Regression coefficients for Model 4 
Model Unstandardized 

Coefficients 
Standard 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -5.507 .331  -16.636 .000 

sc1 Higher managerial & professional 12.467 .399 .365 31.255 .000 

sc2 Lower managerial & professional 9.036 .356 .359 25.402 .000 

sc3 Intermediate 6.459 .438 .155 14.735 .000 

sc4 small employers & own account 5.949 .384 .185 15.508 .000 

sc5 Lower supervisory & technical 4.130 .395 .122 10.454 .000 

sc6 semi-routine 2.751 .384 .085 7.157 .000 

sc7 routine 1.328 .396 .039 3.356 .001 

sc0 missing 3.813 .350 .147 10.901 .000 

gender Gender 1.109 .153 .056 7.262 .000 

e1 Mixed heritage -.378 .348 -.008 -1.085 .278 

e2 Indian 1.518 .308 .038 4.927 .000 

e3 Pakistani -2.864 .326 -.070 -8.789 .000 

e4 Bangladeshi -1.056 .373 -.023 -2.835 .005 

e5 Black Caribbean -3.939 .402 -.076 -9.808 .000 

e6 Black African -2.956 .400 -.058 -7.398 .000 

e7 Any other ethnic group .010 .390 .000 .025 .980 

 

As we saw before, there is clearly a strong relationship between SEC and age 14 

attainment, even after accounting for gender and ethnicity. Breaking the SEC 

variable down into its individual categories and comparing them to the base category 

of „long term unemployed‟ makes interpretation of the coefficients more intuitive. For 

example, students from „Higher managerial and professional‟ homes are predicted to 

obtain 12.5 more standard score marks than those from homes where the main 

parent is long term unemployed. Students from „lower managerial and professional‟ 

homes achieve 9.0 more marks, those from intermediate homes 6.5 more marks and 

so on. You can see the ordinality in the data from the decreasing B coefficients: as 

the SEC of the home decreases there is a reduction in the extent of the „boost‟ to 

age 14 standard score above the reference group of students from homes where the 

head of the household is long term unemployed. Being able to interpret the 

difference between categories in this way is very useful! We can see from the t 

statistic and associated „sig‟ values that all SEC contrasts are highly statistically 

significant, including for those students with missing values for SEC.  
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3.10 Comparing coefficients across models 
 

A significant objective in multiple regression modelling, as we observed in the 

introduction, is to assess the association of a variable with an outcome after 

controlling for the influence of other variables. Figure 3.10.1 shows the relationship 

between ethnicity and SEC and it is apparent that students from minority ethnic 

backgrounds are less likely to be from the more affluent socio-economic classes 

than those from a White British background.  Regression can be used to ascertain 

whether the ethnic gaps in attainment at age 14 result from these observed 

differences in SEC between ethnic groups. We can undertake this analysis by 

comparing the coefficients for our variable of interest (ethnic group) both before and 

after including the other „control‟ variables in the multiple regression model (SEC and 

gender).  

 

Figure 3.10.1: % SEC breakdown by Ethnic group 

 
Figure 3.10.3 shows the relationship between ethnic group and age 14 standard 

score both before and after controlling for the influence of gender and the SEC of the 

home. In both cases the reference category is White British students. The blue bars 

represent the unadjusted difference in mean age 14 scores between ethnic groups 

(the values for coefficients e1 to e7 when these are the only explanatory variables 

included in the regression model). The red bars display the ethnic coefficients e1 to 

e7 from model 4, after gender and SEC have been controlled (that is the variance in 

age 14 score that is accounted for by gender and SEC has been removed using the 

regression analysis). Indian students on average scored higher than White British 

students, and this difference was even more pronounced when their greater level of 

deprivation was taken into account, with an increase in the gap from 0.8 to 1.4 

points. The gap for Bangladeshi students reduced from -3.9 points to around -1.0 

point after adjustment, a reduction of 73%. There were smaller but still significant 

reductions in the size of the gap for Pakistani students (from -4.7 points to -2.9 
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points) and for Black African students (from -4.1 to -3.0 points). However the 

average gap between Black Caribbean and White British students hardly changed at 

all, reducing only from -4.2 to -4.0 points.  

 

Table 3.10.2: Regression coefficients for ethic groups before and after 

controlling for gender and SEC of the home 

  Unadjusted 

coefficients 

Coefficients adjusted 

for gender and SEC 

Intercept .790 -5.507 

Mixed heritage -.39 -.38 

Indian .76 1.52 

Pakistani -4.70 -2.86 

Bangladeshi -3.87 -1.06 

Black Caribbean -4.20 -3.94 

Black African -4.13 -2.96 

Any other ethnic group -.62 .01 

Sample size 14831 14517 

Note: The sample size reduction in the adjusted model reflects the exclusion of 314 

cases where gender was not known. 

 

Figure 3.10.3: Relationship between ethnic group and age 14 standard 
score before and after controlling for gender and SEC of the home 

 

 
There are many other variables in our LSYPE dataset than just SEC, gender and 

ethnicity, and it is likely that some of these may explain more of the ethnic gaps in 

attainment. However at this stage it is sufficient to show how coefficients can be 

compared across regression models to demonstrate the principle involved. One of 

the strengths of multiple regression is being able to ascertain the relative importance 

of an explanatory variable once others have been taken into account. 
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3.11 Exploring interactions between a dummy and a continuous 

variable (Model 5) 

 

So far we have considered only the main effects of each of our explanatory 

variables (SEC, gender and ethnic group) on attainment at age 14. That is we have 

evaluated the association of each factor with educational attainment while holding all 

other factors constant. This involves a strong assumption that the effects of SEC, 

gender and ethnic group are additive, that is there are no interactions between the 

effect of these variables. For example we have assumed that the „effect‟ of SEC is 

the same for all ethnic groups, or equivalently that the „effect‟ of ethnicity is the same 

at all levels of SEC. However there is the possibility that SEC and ethnic group may 

interact in terms of their effect on attainment, that the relationship between ethnicity 

and attainment may be different at different levels of SEC (or put the other way 

around that the relationship between SEC and attainment may vary for different 

ethnic groups, it‟s the same thing). Is this assumption of additive effects valid, and 

how can we test it? 

 

In any multiple regression model there exists the possibility of interaction effects. 

With only two explanatory variables there can of course be only one interaction, 

between explanatory variable 1 and explanatory variable 2, but the greater the 

number of variables in your model the higher the number of possible interactions. 

For example if we have 10 explanatory variables then there are 45 possible pairs of 

explanatory variables that may interact. It is unwieldy to test all possible 

combinations of explanatory variables, and indeed such „blanket testing‟ may give 

rise to spurious effects, simply because at the 5% significance level some of the 

interactions might be significant by chance alone. Your search for possible 

interactions should be guided by knowledge of the existing literature and theory in 

your field of study. In relation to the literature of educational attainment, there is quite 

strong emerging literature suggesting interactions between ethnicity and SEC (e.g. 

Strand, 1999; 2008). Let‟s evaluate whether there is a statistically significant 

interaction between ethnicity and SEC in the current data, returning to the variables 

we used for model 3 (Page 3.7).  

 

Step 1: Creating the interaction terms 
Is it reasonable to assume that ethnic group differences in attainment are the same 

at all levels of SEC? We mentioned above that there is an emerging literature that 

suggests this may not be the case. One way to allow for different slopes in the 

relationship between SEC and attainment for different ethnic groups is to include 

extra variables in the model that represent the interactions between SEC and ethnic 

group. 

 

For the purpose of this first example we treat SEC as a continuous variable, as we 

did in Models 1-3 (Pages 3.4 to 3.8). We want to create additional explanatory 
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variables that will represent the effect of SEC within each ethnic group. We do this 

simply by multiplying each of our ethnic group dummy variables by SEC. The table 

below (Figure 3.11.1) shows the computed values for some selected cases.  e1sec 

will be a separate variable containing the SEC values only for cases where ethnicity 

=1 (Mixed heritage students); e2sec will be a separate variable contain the SEC 

values only for cases where ethnicity =2 (Indian students) and so on.  Remember 

there has to be an omitted category against which these dummy variables are 

contrasted and this is White British students. 

 

Figure 3.11.1: Table showing examples of new interaction variables 

Ethnic group 

 

SEC e1sec e2sec e3sec 

e1=1 (Mixed) 2 2 0 0 

e1=1 (Mixed) 5 5 0 0 

e1=1 (Mixed) 8 8 0 0 

e2=1 (Indian) 1 0 1 0 

e2=1 (Indian) 2 0 2 0 

e2=1 (Indian) 5 0 5 0 

e3=1 (Pakistani) 1 0 0 1 

e3=1 (Pakistani) 5 0 0 5 

e3=1 (Pakistani) 8 0 0 8 

etc     

 

The inclusion of the terms e1sec to e7sec, called the interaction between ethnic 

group and SEC, allows for the relationship between SEC and attainment to vary for 

different ethnic groups. If these interaction terms are significant we say there is an 

interaction effect. 

 

We have created these variables for you in the LSYPE 15000 MLR  but if you like 

you can do it yourself using the compute menu (See Module 1) or by using the 

following syntax: 

SYNTAX ALERT! 

COMPUTE  e1sec= e1 * SEC. 

COMPUTE  e2sec= e2 * SEC. 

COMPUTE  e3sec= e3 * SEC. 

COMPUTE  e4sec= e4 * SEC. 

COMPUTE  e5sec= e5 * SEC. 

COMPUTE  e6sec= e6 * SEC. 

COMPUTE  e7sec= e7 * SEC. 
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NOTE: Unlike the SPSS multiple linear regression procedure, other SPSS statistical 

procedures which we will use later (such as multiple logistic regression) allow you to 

specify interactions between chosen explanatory variables without having to 

explicitly calculate the interaction terms yourself. This can save you some time. 

However it is no bad thing to calculate these terms yourself here because it should 

help you to understand exactly what SPSS is doing when evaluating interactions. 

Also whether you calculate these interactions terms yourself or the computer 

calculates these terms for you, you still have to be able to interpret the interaction 

coefficients in the regression output. So bear with it! 

 

Step 2: Adding the interaction terms to the model 

Now we add the seven variables e1sec to e7sec to our model. Go to the main 

regression menu again and add e1sec, e2sec, e3sec, e4sec, e5sec, e6sec, e7sec, 

sec, gender, and e1- e7. As always, ks3stand is our Dependent variable. Before 

moving on select the SAVE submenu and place a tick in the unstandardised 

residuals box. SPSS will save the predicted values for each case and, as this is the 

second time we have requested predicted values, will name the new variable 

PRE_2. These predicted values will be useful later in plotting the interaction effects. 

Click OK to run the regression. 

 

The coefficients table from the SPSS regression output is shown below. 

 
Figure 3.11.2: Coefficients for Model 5 

Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 7.811 .226  34.526 .000 

sec Socio-economic class of the 
home 

-1.836 .048 -.415 -38.326 .000 

gender Gender 1.220 .166 .062 7.366 .000 

e1 Mixed heritage -.772 .759 -.017 -1.016 .309 

e2 Indian -.159 .775 -.004 -.206 .837 

e3 Pakistani -5.528 .918 -.131 -6.024 .000 

e4 Bangladeshi -6.865 1.439 -.137 -4.771 .000 

e5 Black Caribbean -6.560 .914 -.127 -7.177 .000 

e6 Black African -5.332 .916 -.103 -5.819 .000 

e7 Any other ethnic group -.642 .894 -.013 -.718 .473 

e1sec Mixed heritage * SEC .104 .167 .011 .622 .534 

e2sec Indian * SEC .372 .159 .046 2.344 .019 

e3sec Pakistani * SEC .639 .161 .088 3.965 .000 

e4sec Bangladeshi * SEC 1.079 .222 .142 4.865 .000 

e5sec Black Caribbean * SEC .581 .200 .052 2.899 .004 

e6sec Black African * SEC .452 .168 .049 2.688 .007 

e7sec Any other * SEC .211 .179 .021 1.180 .238 

 

How do we interpret the output? As before the intercept term (Constant) refers to the 

predicted values for the reference or base category, which is where SEC=0, 
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gender=0 (boy) and ethnicity=0 (White British).  However the coefficient for SEC now 

represents the effect of SEC for the reference group only (White British students). 

For White British students, attainment drops by 1.836 standard score points for every 

unit increase in the value of SEC. To evaluate the effect of SEC for each ethnic 

group, we adjust the overall SEC coefficient by combining it with the relevant 

ethnic*sec interaction term. Thus the slope of SEC for Black Caribbean students is -

1.836 + .581= -1.26, significantly less steep than the slope for White British students.  

This is indicated by the significant p value for the Black Caribbean * SEC interaction 

term (p<.000).   

 

A good way of interpreting this data is to calculate what the predicted age 14 

standard scores are from the model: 

 

Predicted age 14 score for male White British students when SEC=5 (Lower 

supervisory): 

  Ŷ = intercept + (5 *SEC coefficient) 

  Ŷ = 7.81 + (5*-1.836) =-1.37 

As gender=0 (male) and ethnic group=0 (White British) there is no contribution from 

these terms. 

 

Predicted age 14 score for male Black Caribbean students when SEC=5 (lower 

supervisory). 

  Ŷ = intercept + (coeff. for Black Caribbean) + (5 * SEC coefficient) + (5 * Black 

Caribbean by SEC interaction)  

  Ŷ = 7.81 + -6.56 + (5*-1.836) + (5 * .581) = - 5.02 

 

As before we can get SPSS to plot the full set of predicted values for all ethnic group 

and SEC combinations using the predicted values from the model that we created 

earlier (by default the variable was named PRE_2). Again we will plot only the values 

for boys since the pattern for girls is identical, except that all predicted values are 

1.22 score points higher.  

 

The syntax below temporarily filters girls out of the analysis AND draws a line graph: 

 

SYNTAX ALERT! 

TEMPORARY. 

SELECT IF GENDER=0. 

GRAPH  /LINE(MULTIPLE) MEAN(pre_2) BY SEC by Ethnic. 

 

The graph is shown in Panel (b) of Figure 3.11.3.  For reference the regression lines 

from the model without interactions is shown in Panel (a). 
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Figure 3.11.3: Regression lines between ethnic group, SEC and attainment 
(a) without and (b) with interactions between ethnic group and SEC. 

 

Figure (a) Figure (b) 

  
 

These interaction effects between ethnic groups and SEC are highly statistically 

significant, particularly for the Pakistani, Bangladeshi, Black Caribbean and Black 

African groups. We can see this from the sig values for the interaction terms which 

show p<.000 for Pakistani and Bangladeshi and p<.01 for the Black Caribbean and 

Black African groups. They are also quite large as can be seen in Figure 3.11.3. 

Note here that the lines are no longer parallel because we have allowed for different 

slopes in our regression model. Thus the slope for White British students is 

significantly steeper than for most ethnic minority groups, indicating the difference in 

attainment between students from high SEC and low SEC homes is particularly 

pronounced for White British students.  Looking at the predicted values we see that 

the differences between ethnic groups from lower SEC homes are much smaller 

than the differences among high SEC homes. Rather than a constant difference 

between White British and Black Caribbean students of 4.25 score points at every 

SEC value, as indicated by model 3 without the interaction terms, the difference is 

actually 6.0 points at SEC=1 (Higher managerial and professional homes) , 3.7 

points at SEC=5 (lower supervisory) and only 1.9 points at SEC=8 (long term 

unemployed). There are clear interaction effects. 

 

Have we improved the fit of our model? 
The inclusion of the interaction terms does not at first glance appear to have 

substantially improved the overall fit of the model; the r2 has only risen from 17.0% to 

17.3% (Figure 3.11.4). You might ask therefore whether the cost in added 

complexity caused by adding seven new interaction variables to the model was 

justified.  While we do not appear to have explained a lot of additional variance in 
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age 14 standard score, we can test the significance of the increase in r2 by re-

running our regression analysis with a few changes. 

(a) On the main regression menu add the explanatory variables in two „blocks‟. 

The first (Block 1) is entered as normal and should include only SEC, gender 

and the ethnic dummy variables (e1 – e7). This is the „main effects‟ model. 

Click the Next button (shown below) to switch to a blank window and enter 

the variables for the second block. In this second window (Block 2) add the 

interaction terms which we created (e1sec – e7sec). This is the „interaction‟ 

model. Note that the variables you included in Block 1 are automatically 

included in the interaction model. Including a second block simply means 

adding new variables to the model specified in the first block. 

 

 
 

(b) Before moving on go to the Statistics sub-menu (one of the buttons on the 

right of the main regression menu) and check the box marked „R squared 

change‟. This essentially asks SPSS to directly compare the predictive power 

(r2) of each model and to test if the difference between the two is statistically 

significant. This way we can directly test whether adding the interaction effect 

terms improves our model. 
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When you are happy with the setup, click OK to run the analysis. 

 

For an alternative method for re-running the analysis use the syntax below. 

 

SYNTAX ALERT! 

REGRESSION  /MISSING LISTWISE /STATISTICS COEFF R ANOVA CHANGE 

/CRITERIA=PIN(.05) POUT(.10)  /NOORIGIN /DEPENDENT ks3stand 

/METHOD=ENTER sec  gender e1 to e7 /ENTER= e1sec to e7sec. 

 

We get the following output under Model Summary. 

 

Figure 3.11.4: Model summary and change statistics for Model 5 

 
 

We are interested here in the columns headed „Change Statistics‟ and specifically in 

the second row which compares Block 2 (the interaction model) against Block 1 (the 

main effects model). We can see that the increase in r2 for the interaction model, 

while small at 0.3%, is highly statistically significant („Sig. F Change‟, p<.000). So 

while the increase in overall r2 is small the model with interactions gives a 

significantly better fit to the data than we get if the interactions are not included. In 

short our interaction model is a much more precise and accurate summary of the 

pattern of mean scores across our different explanatory variables. However the 

relatively low r2 at 17.3% indicates that there is considerable variation in attainment 

between students within each category of the explanatory variables. Thus 

predictions of the attainment of any individual student based simply on knowledge of 

their SEC, ethnicity and gender, will have a large degree of imprecision. We will see 

later how adding further explanatory variables (such as prior attainment at age 11, 

Page 3.13) can substantially improve the r2 for the model. 
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3.12 Exploring interactions between two nominal variables  
(Model 6) 
 

The above process is relatively easy to compute (yes, I‟m afraid it will get a little 

harder below!) but has the same problem of data loss we identified earlier. The 2941 

cases that have no valid value for SEC are excluded from the model. As before we 

can avoid this data loss if we transform SEC to a set of dummy variables and 

explicitly include missing values as an additional dummy category. This has the 

advantages outlined on Page 3.8. However if we keep the full eight SEC categories 

this would lead to a very large number of interaction terms: 7 ethnic group dummies * 

8 SEC dummies (including the dummy variable for missing cases) = 56 separate 

interaction terms! This is substantially higher than the seven new variables we 

included when we treated SEC as a continuous variable on page 3.11. Needless to 

say this analysing this would be a painful experience... In the interest of a 

parsimonious model it is unhelpful to add so many additional variables. One way to 

make the interactions more manageable is to „collapse‟ the SEC variable into a 

smaller number of values by combining some categories. 

 

Step 1: Collapse SEC to three levels 
 

The Office for National Statistics socio-economic class (NS-SEC) coding system was 

used in this study. The system includes criteria for identifying 8, 5 or 3 class versions 

of SEC (see Resources page). To simplify the structure we recode SEC from the 

eight to the three class version, which combines higher and lower managerial and 

professional (class 1 and 2), intermediate, small employers and lower supervisory 

(classes 3 to 5) and semi-routine, routine and unemployed groups (classes 6 to 8). 

We will also create a new category for those with missing values for SEC.  

 

All of the variables and interaction terms over the rest of this page have already been 

created for you in the LSYPE 15000 MLR , so you do not need to create them 

yourself. However, if you would like to follow the process exactly then feel free! You 

can either use the Recode menu (see Module 1) or you can run the syntax below 

(which will also produce a frequency table for the new variables) to create the 

required 3 item SEC variable: 

 

SYNTAX ALERT! 

RECODE SEC (0=0)(1 thru 2=1)(3 thru 5=2)(6 thru 8=3) INTO SECshort. 

VALUE labels SECshort 0'missing' 1'Managerial & professional' 2 'Intermediate' 

3'Routine, semi-routine or unemployed'. 

FORMATS secshort (F1.0). 

FREQ SECshort. 

 

The new variable looks like this: 
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Figure 3.12.1: Frequencies for collapsed SEC variable 

 
Frequency Percent 

Valid 
Percent 

Cumulative 
Percent 

Valid 0 missing 2941 18.6 18.6 18.6 

1 Managerial & professional 4650 29.5 29.5 48.1 

2 Intermediate 4058 25.7 25.7 73.9 

3 Routine, semi-routine or unemployed 4121 26.1 26.1 100.0 

Total 15770 100.0 100.0  

 

We can then calculate dummy variables for the collapsed variable, taking category 3 

(low SEC) as the base or reference category. 

 

SYNTAX ALERT! 

RECODE secshort (1=1)(else=0) into SEChigh. 

RECODE secshort (2=1)(else=0) into SECmed. 

RECODE secshort (0=1)(else=0) into SECmiss. 

FORMATS sechigh SECmed SECmiss (F1.0). 

 

We should note that collapsing a variable is not only useful if we want to test 

interactions, it is most often necessary where the number of cases in a cell is 

particularly low. Figure 3.12.2 shows the Crosstab of SEC and ethnic group. We can 

see there were only three Bangladeshi students in SEC class 1. By combining SEC 

classes 1 and 2 we increase the number of Bangladeshi students in the high SEC 

cell to 35. This is still relatively low compared to other ethnic groups, but will provide 

a more robust estimate than previously. 

 

Figure 3.12.2: Crosstabulation of SEC by ethnic group 

 
 

Step 2: Create the interaction terms 

As before to create the interaction terms we simply multiply each ethnic dummy 

variable by the relevant SEC dummy variable. Again, we have done this for you in 

the LSYPE 15000 MLR  dataset but if you want to do it yourself you can use the 

Compute option (see Module 1) or the syntax below. 
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SYNTAX ALERT! 

COMPUTE e1high = e1*sechigh. 

COMPUTE e1med = e1*secmed. 

COMPUTE e1miss = e1*secmiss. 

COMPUTE e2high = e2*sechigh. 

COMPUTE e2med = e2*secmed. 

COMPUTE e2miss = e2*secmiss. 

COMPUTE e3high = e3*sechigh. 

COMPUTE e3med = e3*secmed. 

COMPUTE e3miss = e3*secmiss. 

COMPUTE e4high = e4*sechigh. 

COMPUTE e4med = e4*secmed. 

COMPUTE e4miss = e4*secmiss. 

COMPUTE e5high = e5*sechigh. 

COMPUTE e5med = e5*secmed. 

COMPUTE e5miss = e5*secmiss. 

COMPUTE e6high = e6*sechigh. 

COMPUTE e6med = e6*secmed. 

COMPUTE e6miss = e6*secmiss. 

COMPUTE e7high = e7*sechigh. 

COMPUTE e7med = e7*secmed. 

COMPUTE e7miss = e7*secmiss. 

FORMATS e1high to e7miss (F1.0). 

VAR LABELS  

 /e1high 'Mixed heritage * high' e1med 'Mixed heritage * medium' e1miss 'Mixed 

heritage * missing' 

 /e2high 'Indian * high'   e2med 'Indian * medium'   e2miss 'Indian * missing' 

 /e3high 'Pakistani * high' e3med 'Pakistani * medium'  e3miss 'Pakistani * missing' 

 /e4high 'Bangladeshi * high' e4med 'Bangladeshi * medium'  e4miss 'Bangladeshi * 

missing' 

 /e5high 'Black Caribbean*high' e5med 'Black Caribbean*med'  e5miss 'Black 

Caribbean*missing' 

 /e6high 'Black African*high' e6med 'Black African * medium'  e6miss 'Black African * 

missing' 

 /e7high 'Any other * high' e7med 'Any Other * medium'  e7miss 'Any Other * 

missing'. 

 

Step 3: Add the interaction terms to the model 

Now we can see the relationship between ethnic group, SEC and attainment using 

the full sample of students. Run the regression analysis including all main and 

interaction variables: ks3stand (Dependent), SEChigh, SECmed, SECmiss, gender, 

e1-e7 and all interaction terms (e.g. e1high, e1med, e1miss, e2high, e2med, e2miss, 
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etc. Twenty-one terms in total). Remember to request predicted values from the 

SAVE submenu (which will be saved by default to the variable PRE_3 because this 

is the third time we have asked SPSS to save predicted values). Figure 3.12.3 

shows the coefficient output. 

 

Figure 3.12.3: Regression coefficients output for Model 6 

Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) -4.142 .211  -19.630 .000 

SEChigh 9.056 .258 .412 35.057 .000 

SECmed 4.147 .268 .184 15.480 .000 

SECmiss 2.500 .311 .096 8.040 .000 

gender Gender 1.073 .154 .054 6.973 .000 

e1 Mixed heritage -.437 .687 -.010 -.637 .524 

e2 Indian 1.883 .580 .048 3.247 .001 

e3 Pakistani -1.802 .529 -.044 -3.407 .001 

e4 Bangladeshi -.452 .546 -.010 -.827 .408 

e5 Black Caribbean -2.668 .804 -.051 -3.319 .001 

e6 Black African -3.388 .643 -.066 -5.273 .000 

e7 Any other ethnic group .361 .739 .007 .489 .625 

e1high Mixed heritage * high -.353 .912 -.005 -.387 .699 

e1med Mixed heritage * medium .494 1.004 .005 .492 .623 

e1miss Mixed heritage * missing -.046 1.092 .000 -.042 .966 

e2high Indian * high -1.650 .883 -.020 -1.870 .062 

e2med Indian * medium -.054 .812 -.001 -.066 .947 

e2miss Indian * missing .130 .905 .002 .144 .885 

e3high Pakistani * high -1.259 1.070 -.011 -1.176 .240 

e3med Pakistani * medium -1.979 .815 -.025 -2.428 .015 

e3miss Pakistani * missing -2.278 .855 -.028 -2.664 .008 

e4high Bangladeshi * high -1.861 1.685 -.009 -1.104 .270 

e4med Bangladeshi * medium -2.733 1.016 -.025 -2.690 .007 

e4miss Bangladeshi * missing -1.443 .867 -.018 -1.665 .096 

e5high Black Caribbean * high -3.167 1.086 -.034 -2.916 .004 

e5med Black Caribbean * medium -1.304 1.128 -.013 -1.156 .248 

e5miss Black Caribbean * missing -.680 1.235 -.006 -.551 .582 

e6high Black African*high -1.473 1.015 -.015 -1.451 .147 

e6med Black African * medium 1.053 1.220 .008 .863 .388 

e6miss Black African * missing 2.244 1.085 .020 2.069 .039 

e7high Any other * high -.402 1.069 -.004 -.376 .707 

e7med Any Other * medium -.857 1.083 -.009 -.792 .429 

e7miss Any Other * missing -.441 1.114 -.004 -.396 .692 

 

The output initially might look a little overwhelming as there are a considerable 

number of variables included, but this is still small compared to many models! We‟re 

not sure if that is reassuring or not... The good thing is that the interpretation of the 

output is substantially the same as we saw on Page 3.11. 

 

 The constant coefficient gives the intercept for our reference group, which is 

White British, boys from low SEC homes.   
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 The SEChigh and SECmedium coefficients are directly interpretable as the 

„boost‟ to attainment for White British pupils associated with residing in medium 

and high SEC homes.  There is a strong boost for Medium SEC (4.2 score 

points) and particularly for high SEC homes (9.1 score points). 

 

 The ethnic coefficients represent the difference in attainment between each 

ethnic group and White British students in the reference group (low SEC homes). 

We see for example that Black Caribbean low SEC students on average score 

about 2.7 points lower than their White British low SEC peers. In contrast Indian 

students score about 1.9 points higher than their low SEC White British peers. 

Both effects are highly statistically significant (p<.001).   

 

 The ethnic * SEC interaction terms show how the boosts associated with medium 

and high SEC homes vary by ethnic group. Take for example Black Caribbean 

students from high SEC homes. The boost associated with high SEC homes for 

White British students is about 9.1 points, but for Black Caribbean students it is 

lower,  9.056 + (-3.167) = 5.9 score points. 

 

As before a good way of interpreting this data is to calculate what the predicted age 

14 standard scores are from the model. 

 

Predicted age 14 score for White British boys from high SEC homes:  

As White British boys are the reference group this value will be calculated from just 

two terms: intercept + high SEC coeff. 

Ŷ = -4.142 + 9.056 = 4.914 

 

Predicted age 14 score for Black Caribbean boys from high SEC homes: 

This will be calculated from: intercept + Black Caribbean coeff. + high SEC 

coefficient  +  Black Caribbean*High interaction coeff. 

Ŷ = -4.142 + -2.668 + 9.056 + -3.167 = -.921 

 

Note that gender is just modelled as a main effect (it has not been allowed to interact 

with SEC or ethnic group), so you would just add 1.073 to get the predicted values 

for girls from any ethnic or SEC group. Again we can plot the predicted value that we 

saved earlier when we specified the regression model (the values were saved as the 

variable PRE_3).  

 

 

NOTE: For the purpose of plotting this graph we have excluded the cases where 

SEC was missing by first setting the missing values code for SECshort to 0 

(remember 0 indicated missing values). If you want to know how we did this, view 

the syntax below: 
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SYNTAX ALERT! 

MISSING VALUES secshort(0). 

GRAPH  /LINE(MULTIPLE)MEAN(pre_3) BY secshort by Ethnic. 

 

If you prefer, you can use the Select Cases option. 

 
 

Figure 3.12.4: Predicted values for attainment at age 14 including 
interactions between ethnic group and SEC  

(Both coded as dummy variables) 

 
 

There are significant interactions between the Pakistani and Bangladeshi groups and 

medium SEC (p=.015 and p=.007 respectively) and between Black Caribbean and 

high SEC (p=.004). The effects are not only statistically significant they are also quite 

large, as can be seen in Figure 3.12.3. Note here that the regression lines are no 

longer parallel because we have allowed for different slopes in our regression model. 

The slope for White British students is significantly steeper than for most ethnic 

minority groups indicating the differences between high SEC and low SEC homes is 

particularly pronounced for White British students.  Looking at the coefficients in 

Figure 3.12.3 we see that the differences between ethnic groups from lower SEC 

homes are much smaller than the differences among high SEC homes. Note that the 

significance tests for the ethnic group coefficients in the SPSS output are for ethnic 

differences in the reference group of low SEC homes. If we want to test the 

significance of the ethnic group differences in high SEC homes we can just change 
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our reference group to high SEC. Similarly if we want to test the significance of the 

ethnic difference at medium SEC we could change reference group to Medium SEC. 

 
Have we improved the fit of our model? 
Again we can test whether we have significantly improved the r2 by entering the 

variables in two blocks and calculating the r2 change (see Page 3.11). Block 1 should 

include SEC, gender and ethnic group (the „main effects‟ model), while the 

interaction terms should be added in Block 2 (the „interaction‟ model). 

 

Figure 3.12.5: Model summary and change statistics for Model 6 

 
 

In Figure 3.12.5, which we received as part of our regression output, we are 

interested here in the columns headed „Change Statistics‟ and specifically in the 

second row which compares Block 2 (the interaction model) against Block 1 (the 

main effects model). We can see that the increase in r2 for the interaction model, 

while small at 0.3%, is highly statistically significant (p<.003). So while the increase 

in overall r2 is small, the model with interactions gives a significantly better fit to the 

data than we get if the interactions are not included. 
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3.13: A value added model (Model 7) 
 

In all the models we have computed so far we have not included the variable which 

we saw in the SLR module had the biggest impact on age 14 score, namely test 

score at age 11. We now will include age 11 test score in our model. We should note 

that adding this variable changes the conceptual nature of our outcome. By 

evaluating attainment at age 14, after the variance associated with attainment at age 

11 has been taken into account, we are effectively evaluating progress between age 

11 and age 14.  Positive residuals will indicate students making greater than average 

progress age 11 to age 14, while negative residuals will indicate pupil making less 

than the average progress between age 11 and 14. 

 

So let‟s run Model 6 again, but this time also include age 11 score as a explanatory 

variable. Additionally, so that we can test whether our interaction terms give a 

statistically significant increase in r2 or not, we will enter the variables in two separate 

blocks and calculate the r2 change, as we did on Page 3.11. First, put ks3stand in 

the Dependent box. Next add ks2stand, SEChigh, SECmed, SECmiss, gender, and 

e1-e7 as explanatory variables in Block 1. Finally add all the interaction terms (e.g. 

e1high, e1med, e1miss, e2high, e2med, e2miss, etc.) as explanatory variables in 

Block 2. If you want to save the predicted variables they will be called PRE_4 but 

you do not need them this time so you may prefer to uncheck the unstandardized 

Predictors box in the SAVE menu. 

 

The figure below shows the model summary (Figure 3.13.1). The r2 increase 

massively from 17.0% in Model 6 up to 79.6% in this model. This testifies to the 

power of prior attainment as a predictive factor. By knowing how well a student was 

achieving at age 11, we can explain nearly 80% of the variance in how well they 

achieve at age 14. It is notable though that the ethnic by SEC interaction terms do 

not Increase r2 significantly. Comparing the main effects model with the interaction 

model we see that there is no evidence that the inclusion of the interaction terms 

raises the r2 of the model („Sig. F Change‟, p = .127). The model explains 79.6% of 

the variance in age 14 scores with or without the interaction effects.  

 

Figure 3.13.1: Model summary when including prior attainment  

 
 

Figure 3.13.2 presents the regression output. While age 11 score is the most 

powerful predictor in the model (look at the Beta values to get a relative idea) it is not 

the only significant explanatory variable in the model. SEC still has a significant 

association with student progress. White British students from medium SEC homes 
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make 1.2 points greater progress than students of the same prior attainment from 

low SEC homes, and White British students from high SEC homes make 2.5 points 

more progress than students with the same age 11 scores from low SEC homes. 

Gender is also still highly significant, with girls making 0.54 points more progress 

than boys after control for prior attainment and SEC. Remember that these are 

effects on student progress. They therefore indicate that social class and gender 

gaps increase between age 11 and age 14, that is the gaps get wider. 

 

Figure 3.13.2: Coefficients output (Model 7) 
Model 

Unstandardized 
Coefficients 

Standardi
zed 

Coefficie
nts 

t Sig. B 
Std. 
Error Beta 

1 (Constant) -1.272 .103  -12.377 .000 

SEChigh 2.408 .128 .112 18.748 .000 

SECmed 1.199 .130 .055 9.236 .000 

SECmiss .722 .151 .028 4.795 .000 

gender Gender .539 .075 .028 7.169 .000 

e1 Mixed heritage -.616 .334 -.014 -1.846 .065 

e2 Indian 1.420 .281 .037 5.059 .000 

e3 Pakistani .569 .257 .014 2.213 .027 

e4 Bangladeshi .322 .269 .007 1.197 .231 

e5 Black Caribbean -.698 .404 -.014 -1.727 .084 

e6 Black African .610 .367 .011 1.663 .096 

e7 Any other ethnic group 1.748 .381 .034 4.590 .000 

e1high Mixed heritage * high .549 .445 .007 1.234 .217 

e1med Mixed heritage * medium .949 .487 .011 1.949 .051 

e1miss Mixed heritage * missing .949 .533 .009 1.781 .075 

e2high Indian * high -.339 .429 -.004 -.790 .429 

e2med Indian * medium .069 .393 .001 .177 .860 

e2miss Indian * missing .334 .440 .004 .760 .447 

e3high Pakistani * high .844 .539 .007 1.566 .117 

e3med Pakistani * medium -.358 .396 -.005 -.904 .366 

e3miss Pakistani * missing -.655 .419 -.008 -1.562 .118 

e4high Bangladeshi * high .558 .828 .003 .673 .501 

e4med Bangladeshi * medium -1.078 .499 -.010 -2.161 .031 

e4miss Bangladeshi * missing .023 .429 .000 .054 .957 

e5high Black Caribbean * high -.454 .539 -.005 -.842 .400 

e5med Black Caribbean * medium -.609 .560 -.006 -1.087 .277 

e5miss Black Caribbean * missing -.044 .616 .000 -.072 .943 

e6high Black African*high -.365 .558 -.003 -.654 .513 

e6med Black African * medium .287 .667 .002 .431 .667 

e6miss Black African * missing -.090 .603 -.001 -.149 .881 

e7high Any other * high -.958 .554 -.009 -1.730 .084 

e7med Any Other * medium -.846 .553 -.008 -1.529 .126 

e7miss Any Other * missing -.768 .575 -.007 -1.335 .182 

ks2stand Age 11 standard marks .845 .004 .858 211.393 .000 

 

Why are the interaction terms no longer significant? The results indicate that some of 

the ethnic by SEC interactions at age 14 reflect differences in prior attainment at age 

11 (not included in earlier models). For example Black Caribbean high SEC students 
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tend to have lower scores at age 11 than White British high SEC students, and this is 

one reason the age 14 attainment of Black Caribbean high SEC students may have 

been lower than their White British high SEC peers. Once we take this factor into 

account the interaction terms are no longer significant. The only exception is 

Bangladeshi * Medium SEC (p=.031). This may have emerged as statistically 

significant at the .05 confidence level due to the fact that multiple pairwise 

comparisons (t-tests) were made. At the .05 level you can expect 1 in 20 pairwise 

comparisons to emerge as statistically significance by chance alone! 

 
We have arrived at the final model for our regression analysis. HOORAY! Given the 

interaction terms are not significant, we revert to the eight class SEC variable we 

used earlier, treated as a set of dummy variables. Our final model (Model 7) is: 

ks3stand (Dependent), sc0-sc7, gender, e1-e7 and ks2stand. 

 

The r2 value of this model is 79.6%, and the coefficients table is presented below. 

 

Figure 3.13.3: Final regression model 
Model Unstandardized 

Coefficients 
Standardized 

Coeffs 

t Sig. B Std. Error Beta 

(Constant) -1.621 .166  -9.752 .000 

sc1 Higher managerial & professional 3.478 .203 .104 17.166 .000 
sc2 Lower managerial & professional 2.388 .180 .097 13.266 .000 
sc3 Intermediate 1.494 .218 .037 6.868 .000 
sc4 small employers & own account 2.006 .191 .064 10.491 .000 
sc5 Lower supervisory & technical .954 .196 .029 4.864 .000 
sc6 semi-routine .593 .192 .019 3.093 .002 
sc7 routine .339 .196 .010 1.723 .085 
sc0 missing 1.070 .175 .042 6.104 .000 

gender Gender .556 .075 .029 7.429 .000 
e1 Mixed heritage -.027 .170 -.001 -.160 .873 
e2 Indian 1.413 .150 .037 9.420 .000 
e3 Pakistani .370 .161 .009 2.299 .021 
e4 Bangladeshi .265 .185 .006 1.430 .153 
e5 Black Caribbean -.926 .199 -.018 -4.647 .000 
e6 Black African .571 .221 .010 2.586 .010 
e7 Any other ethnic group 1.117 .201 .022 5.556 .000 

ks2stand Age 11 standard marks 
 

.842 .004 .855 210.50
2 

.000 

 

The next step is to test the adequacy of the model specification and whether the 

assumptions of multiple regression analysis, as outlined on Page 3.3, have been 

successfully met. 
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3.14 Model diagnostics and checking your assumptions 
 

So far we have looked at building a multiple regression model in a very simple way. 

We have not yet engaged with the assumptions and issues which are so important to 

achieving valid and reliable results. In order to obtain the relevant diagnostic 

statistics you will need to run the analysis again, this time altering the various SPSS 

option menus along the way. 

 

Let‟s use this opportunity to build model 7 from the beginning. Take the following 

route through SPSS: Analyse> Regression > Linear and set up the regression. We 

will use model 7 which is: ks3stand as the outcome variable, with the explanatory 

variables as ks2stand, gender, e1-e7 (ethnicity) and sc0-sc7 (Socio-economic class). 

Don‟t click ok yet! 

 

We will need to make changes in the submenus in order to get access to the 

necessary information for checking the assumptions and issues. Let‟s start with the 

Statistics and Plots submenus. 

 

 
 

Many of these options should be familiar to you from the previous module. 

 

We will request the Estimates, Descriptives and Model fit from the Statistics 

submenu. We also recommend that you get the Confidence Intervals this time as 
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they provide the range of possible values for each of your explanatory variable‟s b 

coefficients within which you can be 95% sure that the true value lies. In addition we 

now have the potential issue of our explanatory variables being too highly correlated, 

so we should also get hold of the Multicollinearity Diagnostics. 

 

It is worth also collecting the Casewise Diagnostics. These will tell us which cases 

have residuals that are three or more standard deviations away from the mean. 

These are the cases with the largest errors and may well be outliers (note that you 

can change the number of standard deviations from 3 if you wish to be more or less 

conservative).  

 

You should exercise the same options as before in the Plots menu. Create a 

scatterplot which plots the standardized predicted value (ZPRED) on the x-axis and 

the standardized residual on the y-axis (ZRESID) so that you can check the 

assumption of homoscedasticity. As before we should also request the Histogram 

and Normal Probability Plot (P-P plot) in order to check that our residuals are 

normally distributed. Head back to Page 2.7 of our previous module if you need to 

jog your memory about how to do all of this on SPSS. 

 

We should also obtain some useful new variables from the Save menu. 

 

 
 

From the Residuals section it is worth requesting the Standardized residuals as 

these can be useful for additional analysis. It is also worth getting the Cook’s 

distance from the Distances section. The Cook‟s distance statistic is a good way of 

identifying cases which may be having an undue influence on the overall model. 

Cases where the Cook‟s distance is greater than 1 may be problematic. Once you 

have obtained them as a separate variable you can search for any cases which may 

be unduly influencing your model. We don‟t need the Unstandardized Predicted 

values for our purposes here. 
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Now that we have selected our outcome and explanatory variables and altered all of 

the relevant submenus it is time to run the analysis... click OK.  

 

SPSS seems to have had a great time and has spat out a vast array of tables and 

plots, some of which are so alarmingly large that they do not even fit on the screen! 

We hope that, by now, you are getting used to SPSS being overenthusiastic and do 

not find this too disconcerting! Rather than reproduce all of that extraneous 

information here we will discuss only the important bits. 

 

The Descriptive Statistics table is always worth glancing over as it allows you to 

understand the basic spread of your data. Note that the dummy variables for 

ethnicity and SEC can only vary between 0 and 1. Next we have a truly monstrous 

Correlations table. We have not included it because it would probably crash the 

internet... or at least make this page harder to read! However, it is very useful to 

know the correlations between the variables and whether they are statistically 

significant. The Correlations table is also useful for looking for multicollinearity. If 

any two explanatory variables have a Pearson‟s coefficient of 0.80 or greater there 

may be cause for concern – they may actually be measures of the same underlying 

factor. We have also ignored the Variables Entered/Removed table as it merely 

provides a summary of all of the variables we have included in our current model. 

 

The model summary (Figure 3.14.1) provides us with a new value for r2 for our 

expanded model, r2 =.797. The model explains about 80% of the variance in age 14 

score. From the ANOVA table we can see that F = 3198.072, df =17, p < .0005. This 

means that, as hoped, the regression model we have constructed is better at 

predicting the outcome variable than using the mean outcome (it generates a 

significantly smaller sum of residuals). 

 

Figure 3.14.1: r and r2 for expanded model 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .893
a
 .797 .797 4.392 

 

The Coefficients table (Figure 3.14.2) is frighteningly massive to account for the 

large number of variables it now encompasses. However, aside from a few small 

additions, it is interpreted in the exact same way as in the previous example so don‟t 

let it see your fear! We won‟t go through each variable in turn (we think you‟re 

probably ready to have a go at interpreting this yourself now) but let‟s look at the key 

points for diagnostics. Note we‟ve had to shrink our table down to fit it on the screen! 
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Figure 3.14.2: Coefficients table for full model 

Model 

Unstandardized 

Coefficients 
Stand. 

Coeff 

t Sig. 

95.0% 

Confidence 

Interval for B 
Collinearity 

Statistics 

B 
Std. 

Error Beta 
Lower 

Bound 
Upper 

Bound Tol VIF 

 (Constant) -1.621 .166  -9.75 .000 -1.946 -1.295   

Age 11 standard marks .842 .004 .855 210.50 .000 .834 .849 .888 1.13 

Gender .556 .075 .029 7.43 .000 .409 .703 .996 1.00 

Mixed heritage -.027 .170 -.001 -.16 .873 -.361 .307 .975 1.03 

Indian 1.413 .150 .037 9.42 .000 1.119 1.707 .966 1.04 

Pakistani .370 .161 .009 2.30 .021 .055 .686 .916 1.09 

Bangladeshi .265 .185 .006 1.43 .153 -.098 .627 .905 1.10 

Black Caribbean -.926 .199 -.018 -4.65 .000 -1.317 -.536 .972 1.03 

Black African .571 .221 .010 2.59 .010 .138 1.003 .966 1.04 

Any other ethnic group 1.117 .201 .022 5.57 .000 .723 1.511 .975 1.03 

SEC missing 1.070 .175 .042 6.10 .000 .726 1.413 .311 3.22 

Higher managerial and 

professional occupations 
3.478 .203 .104 17.17 .000 3.081 3.875 .398 2.52 

Lower managerial and 

professional occupations 
2.388 .180 .097 13.27 .000 2.035 2.741 .273 3.66 

Intermediate occupations 1.494 .218 .037 6.87 .000 1.068 1.921 .506 1.97 

Small employers and own 

account workers 
2.006 .191 .064 10.49 .000 1.631 2.380 .394 2.54 

Lower supervisory and 

technical occupations 
.954 .196 .029 4.86 .000 .569 1.338 .412 2.43 

Semi-routine occupations .593 .192 .019 3.09 .002 .217 .969 .399 2.51 

Routine occupations .339 .196 .010 1.72 .085 -.046 .724 .429 2.33 

 

Because we requested multicollinearity statistics and confidence intervals from 

SPSS you will notice that we have four more columns at the end of the coefficients 

table. The 95% confidence interval tells us the upper and lower bounds for which we 

can be confident that the true value of b coefficient lies. Examining this is a good way 

of ascertaining how much error there is in our model and therefore how confident we 

can be in the conclusions that we draw from it. Finally the Collinearity Statistics tell 

us the extent to which there is multicollinearity between our variables. If the value for 

the Tolerance is less than 10 and the value of the VIF is close to 1 for each 

explanatory variable then there is probably no cause for concern. The VIF for some 

of the SEC variables suggests we may have some issues with multicollinearity which 

require further investigation. However looking at the correlations table reveals that 

correlations between variables are weak despite often being statistically significant 

which allays our concerns about multicollinearity. 
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Collinearity Diagnostics emerge from our output next. We will not discuss this here 

because understanding the exact nature of this table is beyond the scope of this 

website. The table is part of the calculation of the collinearity statistics. The 

Casewise Diagnostics table is a list of all cases for which the residual‟s size 

exceeds 3. We haven‟t included it here because as you can see there are over 100 

cases with residuals of this size! There are several ways of dealing with these 

outliers. If it looks as though they are the result of a mistake during data entry the 

case could be removed from analysis. Close to one hundred cases seems like a lot 

but is actually not too unexpected given the size of our sample – it is less than 1% of 

the total participants. The outliers will have a relatively small impact on the model but 

keeping them means our sample may better represent the diversity of the population. 

 

We created a variable which provides us with the Cook’s Distance for each case 

which is labelled as COO_1 in your dataset. If a case has a Cook‟s distance of 

greater than 1 it may be an overly influential case that warrants exclusion from the 

analysis. You can look at the descriptive statistics for Cook‟s distance to ascertain if 

any cases are overly influential. If you have forgotten how to calculate the descriptive 

statistics, all you need to do is take the following route through SPSS: Analyze > 

Descriptive Statistics > Descriptives (see Module 1 if you require a reminder). 

Figure 3.14.3 shows the output. As you can see the maximum value of Cook‟s 

distance in our sample is .00425 which far less than the value of 1 which may be a 

cause for concern. We do not appear to have any problematic cases in our sample. 

 

Figure 3.14.3: Descriptive statistics for Cook’s distance Model 7 

 
 

The Residuals Statistics (Figure 3.14.4) summarize the nature of the residuals and 

predicted values in the model (big surprise!). It is worth glancing at so you can get a 

better understanding of the spread of values that the model predicts and the range of 

error within the model. 

 

Figure 3.14.4: Residual statistics for model 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -22.75 35.24 .41 8.704 13845 

Residual -29.355 20.986 .000 4.390 13845 

Std. Predicted Value -2.660 4.002 .000 1.000 13845 

Std. Residual -6.683 4.778 .000 .999 13845 
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Next we have the plots and graphs that we requested. A Histogram of the residuals 

(Figure 3.14.5) suggests that they are close to being normally distributed but there 

are more residuals close to zero than perhaps you would expect. 

 

Figure 3.14.5: Histogram of standardized model residuals 

 
The P-P plot (Figure 3.14.6) is a little more reassuring. There does seem to be 

some deviation from normality between the observed cumulative probabilities of 0.2 

and 0.6 but it appears to be minor. Overall there does not appear to be a severe 

problem with non-normality of residuals. 

 
Figure 3.14.6: P-P plot of standardized model residuals 

 
This Scatterplot (which we have altered with binning in Figure 3.14.7 to clarify) 

shows that the residuals are not distributed in any pattern with the predicted values. 

This suggests that our model does not violate the assumption of homoscedasticity.  
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Figure 3.14.7: Scatterplot of standardized residuals against standardized 
predicted values 

 
 

Finally, we created a variable for the Standardized Residuals of the model which 

has appeared in your data file labelled as ZRE_1. If you wanted to perform certain 

analyses regarding which groups or cases the model is more accurate for (e.g. do 

certain ethnic groups have a smaller mean residual than others?) than creating this 

variable is very useful. 

 

Now we have run our multiple regression with all of the explanatory variables let‟s 

have a look at how to report the results...  
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3.15 Reporting your results 
 
As we said before, you should check the style guide for your university or target 

audience before writing up and avoid cutting and pasting SPSS output into your 

report! That said, we could report our multiple regression in the following way: 

 

A multiple linear regression was carried out to ascertain the extent to which age 11 

test scores, socio-economic class, gender and ethnicity can predict age 14 test 

scores. The regression model predicted 79.7% of the variance. The model was 

suitable for predicting the outcome (F = 3198.1, df = 17, p < .000). The coefficients 

for the explanatory variables are tabulated below:  

 
B SE  t Sig. 

Constant -1.62 .166 -9.9 .000 

Age 11 (KS2) score .842 .004 210.5 .000 

Gender (Girls versus boys) .566 .075 7.4 .000 

Mixed heritage -.027 .170 -.16 .873 

Indian 1.41 .150 9.4 .000 

Pakistani .37 .161 2.3 .021 

Bangladeshi .27 .185 1.4 .153 

Black Caribbean -.93 .199 -4.7 .000 

Black African .57 .221 2.6 .010 

Any other ethnic group 1.12 .201 5.6 .000 

White British (reference) 0    

Higher managerial & professional 3.48 .203 17.2 .000 

Lower managerial & professional 2.39 .180 13.3 .000 

Intermediate occupations 1.49 .218 6.9 .000 

Small employers and own account workers 2.01 .191 10.5 .000 

Lower supervisory & technical occupations .95 .196 4.9 .000 

Semi-routine occupations .59 .192 3.1 .002 

Routine occupations .34 .196 1.7 .085 

SEC missing data 1.07 .175 6.1 .000 

Never worked/Unemployed (reference) 0    

 

Age 11 score was the strongest predictor of age 14 score. However gender, ethnicity 

and socio-economic class still accounted for a statistically significant amount of the 
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variance. Students from higher managerial and professional homes obtained on 

average a score 3.5 points higher than the lowest social class (long-term 

unemployed) even when prior attainment at age 11, gender and ethnicity were 

controlled. In relation to ethnicity, Black Caribbean students scored approximately 

1.0 point lower at age 14, and Indian students scored 1.4 points higher, than White 

British students. Both results were highly statistically significant (p<.000). Gender 

differences were also statistically significant with girls scoring 0.6 of a mark higher 

than boys, again after control for prior attainment, ethnicity and social class. 

 

We think you should take our quiz and work through our exercises before moving on 

to the next module. Go on – it will be FUN! Well, sort of... 

  



62 

 

Exercise 

The following questions are slightly different in style to the ones you encountered in 

the previous module. We asked you to run a full analysis last time but we are now 

dealing with far more complex models and a single worked example would be way 

too big! Instead we have broken the process down into smaller questions which are 

easier to digest and more pleasant for your statistical palette. Don‟t worry; we will still 

be testing you! You will still need to perform a full multiple linear regression analysis. 

Note that you will also need to use the skills you learnt in previous modules.  

Use the LSYPE 15,000 dataset  to work through each question. As before we 

recommend that you answer them in full sentences with supporting tables or graphs 

where appropriate as this will help when you come to report your own research. The 

answers are on the next page.  

Note: The variable names as they appear in SPSS dataset are listed in brackets.  

  

Question 1 

There is a variable in the LSYPE data (singlepar) which indicates whether the pupil 

lives in a single parent family (value=1) or not (value=0). What percentage of pupils 

in the sample live in single parent families (singlepar)?  

Use Frequencies to answer this question.  

  

Question 2   

Does the percentage of pupils with single parents (singlepar) vary across different 

ethnic groups (ethnicity) and is the association statistically significant?  

Use chi-square for this analysis.  

  

Question 3 

Is living in a single parent family (singlepar) related to educational attainment at age 

14 (ks3stand), our outcome variable? Graphically display the relationship.  

Use a bar chart.  
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Question 4 

Is the relationship between age 14 attainment (ks3stand) and single parent family 

(singlepar) statistically significant if you add singlepar to model 7 as an explanatory 

variable? What is the importance of the single parent family variable relative to the 

other explanatory variables in the model?  

Run model 7 (Page 3.13) adding ‘single parent family’ (singlepar) as an explanatory 

variable.  

  

Question 5 

Does adding the single parent family variable improve the predictive power of model 

7 by a statistically significant increment?  

Calculate R2 change using two blocks for your regression analysis.  

  

Question 6 

Does adding the single parent family (singlepar) variable cause any issues for the 

assumption of homoscedasticity of variance?  

Check the scatterplot of predicted score and standardized residual.  
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Answers 

Question 1  

This question can be answered by creating a frequency table (head to the 

Foundation Module if you have forgotten how to do this).  

 

As you can see just over 25% of the students in the sample come from a single 

parent home. 

 

Question 2  

This question requires a crosstabulation with chi-square analysis. If you are rusty on 

this, head over to Page 2.2. 
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The table shows that the percentage of those from a single parent family does 

indeed vary between ethnic groups. For example, about 23% of the students from 

White British backgrounds are from single parent households compared to nearly 

56% of those from Black Caribbean backgrounds. We can test the statistical 

significance of this association using chi-square.    

 

As the test shows, the chi-square value of 756.6 is statistically significant (p < .005) 

so it is unlikely that an association of this strength could have occurred in our sample 

if there was no such association in the overall population. 

 

Question 3 

A bar chart which uses the mean of the age 14 exam scores (ks2stand) on the y-axis 

is best for answering this question. If you can‟t quite recall how to do this the process 

is described in the Foundation Module.  
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As you can see, the mean age 14 score for students from a single parent families is 

substantially lower than average while those from backgrounds with two parents 

score slightly higher than average. 

  

Question 4 

You will need to re-run model 7 (on Page 3.13) but add the single parent family 

(singlepar) variable as a predictor. The basic procedures for running a regression 

module start on Page 3.4. The table required for answering this question is the 

coefficients table:  

 

We have highlighted the single parent family variable. The columns marked t and sig 

test tell us that the variable is contributing to the model to a statistically significant 

degree (p < .005). The B-coefficient in the first column suggests that, even after all 

the other variables in the model are held constant, those students from single parent 

families score an average of -.854 less standard marks at age 14 than their peers 

from families with two parents. Though this is significant, the Beta column puts this in 
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perspective by providing a standardized coefficient for all variables. The Beta value 

of -.038 is much smaller than the one for age 11 exam score (.852) which shows that 

prior attainment is a more powerful predictor of exam score by far. 

  

Question 5   

Answering this question requires you to break the model down in to two blocks, with 

the first block being the original model 7 and the second block being model 7 plus 

the single parent family variable. You will also need to request [glossary term='R 

Squared' page='/fac/soc/wie/research-new/srme/glossary']R-square[/glossary] 

change statistics from SPSS. The process for doing both of these things is explained 

at the end of Page 3.11. The Model Summary is shown below, complete with R-

Square Change statistics.  

 

The highlighted R square Change column for „model 2‟ (where singlepar was added) 

shows that r2  only increases by .001 compared to the original model 7 (labelled „1‟ 

here – just to confuse you!). This means that only an additional 0.1% of the variance 

in age 14 exam score was explained by the new model. This is a small amount but 

that does not mean it is not a significant amount. The Sig. F Change indicates that 

the enhanced model („2‟) is better at predicting the outcome to its predecessor („1‟) to 

statistically significant level (p < .005). 

 

Question 6  

To check this assumption you will need to examine a scatterplot which has the 

standardized predicted values for each participant on the x-axis and the 

standardized residual for each participant on the y-axis. This is achieved using the 

Plots submenu on the right hand side of the main regression window. Pages 3.3 and 

3.14 discuss assumptions and how to test them if you are unsure how to do this.  
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The plot looks relatively unchanged from the one we saw when running diagnostics 

on model 7 (Page 3.14). The points are spread out in a fairly random manner which 

suggests that our assumption of homoscedasticity is likely to be safe!  

 

 


