SAS output for exemplar 6 from scores
This file was produced using the SAS html output with the minimal style.
You can also view the program that created this output.
Some comments have been added to the output in blue and preceeded by ****Links in this page First analyses of just the 6 prevalence measures Analysis with repeated measures Analysis with IVEWARE macro Postimputation procedures for IVEWARE results Analysis with PROC MI Postimputation procedures for PROC MI results
Then with all scores and other varaibles Analysis with IVEWARE macro Some data checks for IVEWARE results Postimputation procedures for IVEWARE results Analysis with PROC MI Postimputation procedures for PROC MI results**** This extract from the output gives the fitted means for the prevalence over time back to top
![]()
Least Squares Means | ||||||
Effect | time | Estimate | Standard Error | DF | t Value | Pr > |t| |
time | 1 | 0.7323 | 0.007032 | 4327 | 104.13 | <.0001 |
time | 2 | 0.7293 | 0.006950 | 4327 | 104.94 | <.0001 |
time | 3 | 0.7843 | 0.006399 | 4327 | 122.56 | <.0001 |
time | 4 | 0.7495 | 0.006778 | 4327 | 110.57 | <.0001 |
time | 5 | 0.7209 | 0.007215 | 4327 | 99.91 | <.0001 |
time | 6 | 0.6068 | 0.008203 | 4327 | 73.98 | <.0001 |
back to top
**** Now some selected output from the IVEWARE results
First one of the equations. Details of every fit plus variance covariance
matrices of parameters can be output.
Impute dprev6 Code: 0 Unperturbed and perturbed coefficients Intercept -1.14668586 -1.227304752 GENDER -0.2619741459 -0.3521203356 dprev3 0.60660311 0.7099782128 dprev4 0.637764151 0.7070447766 dprev2 0.1090258038 0.158246624 dprev1 0.2083380484 0.2469818953 dprev5 1.562734838 1.617341827**** At the end observed and imputed values are given. These are prevalence at sweep 5 and 6. YOu can see that the imputed data have somewhat higher prevalences
Variable dprev5 Observed Imputed Combined Code Freq Per Freq Per Freq Per 0 1086 28.94 135 23.44 1221 28.21 1 2666 71.06 441 76.56 3107 71.79 Total 3752 100.00 576 100.00 4328 100.00 Variable dprev6 Observed Imputed Combined Code Freq Per Freq Per Freq Per 0 1391 40.98 325 34.80 1716 39.65 1 2003 59.02 609 65.20 2612 60.35
back to top
**** Now extract from PROC MIANALYZE that gives mean of each score. This for boys only. From observed data only would be
0.7895 0.7768 0.81100 0.7812 0.7266 0.6472, so not much affected by imputation.
Multiple Imputation Parameter Estimates | ||||||||||
Parameter | Estimate | Std Error | 95% Confidence Limits | DF | Minimum | Maximum | Theta0 | t for H0: Parameter=Theta0 |
Pr > |t| | |
dprev1 | 0.790544 | 0.009190 | 0.772452 | 0.808635 | 277.44 | 0.787117 | 0.793056 | 0 | 86.02 | <.0001 |
dprev2 | 0.780950 | 0.009051 | 0.763195 | 0.798705 | 1440.1 | 0.778438 | 0.782092 | 0 | 86.28 | <.0001 |
dprev3 | 0.813842 | 0.008533 | 0.797102 | 0.830582 | 1251.1 | 0.811786 | 0.815441 | 0 | 95.38 | <.0001 |
dprev4 | 0.784947 | 0.009060 | 0.767164 | 0.802731 | 830.06 | 0.782092 | 0.786661 | 0 | 86.64 | <.0001 |
dprev5 | 0.739493 | 0.009759 | 0.720321 | 0.758664 | 525.56 | 0.737323 | 0.742805 | 0 | 75.78 | <.0001 |
dprev6 | 0.649726 | 0.011553 | 0.626630 | 0.672822 | 61.586 | 0.645500 | 0.655550 | 0 | 56.24 | <.0001 |
back to top
**** PROC MI produces various outputs including means of imputed variables,
but this is not relevant here because this is on the unrounded data.
Instead we show the range of imputed values obtained before rounding to 0 or 1.
They all look OK.
Variable | Mean | Std Dev | Minimum | Maximum |
_Imputation_ CASEID GENDER dprev1 dprev2 dprev3 dprev4 dprev5 dprev6 |
5.5000000 3303.21 1.4942237 0.7321019 0.7301960 0.7844779 0.7501388 0.7205060 0.6061606 |
2.8723145 1325.65 0.4999724 0.4439232 0.4455094 0.4132068 0.4348281 0.4516458 0.4889685 |
1.0000000 1000.00 1.0000000 -0.8384172 -0.8728717 -0.6935567 -0.9319122 -0.8990870 -1.1732459 |
10.0000000 5596.00 2.0000000 2.3938461 2.2746336 1.9690113 2.1037230 2.3992527 2.3684941 |
back to top
**** Now same table after rounding to 0 1 gives the estimated prevalences. In fact the means are not much affaected but obviously range is different.
Variable | N | Mean | Std Dev | Minimum | Maximum |
dprev1 dprev2 dprev3 dprev4 dprev5 dprev6 |
43280 43280 43280 43280 43280 43280 |
0.7295518 0.7277033 0.7828096 0.7469039 0.7164510 0.5994224 |
0.4441965 0.4451469 0.4123380 0.4347906 0.4507257 0.4900212 |
0 0 0 0 0 0 |
1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 |
back to top
**** Imputation of the larger set of variables produces lots of diagnostics too, all of which seem OK. Different variables had to be defined as the correct variable type. Simple procedures like checking the range of data in each imputation are also helpful. Only the first imputation is shown here. The volume results have not hit their upper limits of 400, which is reassuring.
_imputation_=1 |
Variable | Label | N | Mean | Std Dev | Minimum | Maximum |
dvol1 dvol2 dvol3 dvol4 dvol5 dvol6 dvar1 dvar2 dvar3 dvar4 dvar5 dvar6 |
volume of offending sweep 1 volume of offending sweep 2 volume of offending sweep 3 volume of offending sweep 4 volume of offending sweep 5 volume of offending sweep 6 variety of offending sweep 1 variety of offending sweep 2 variety of offending sweep 3 variety of offending sweep 4 variety of offending sweep 5 variety of offending sweep 6 |
4328 4328 4328 4328 4328 4328 4328 4328 4328 4328 4328 4328 |
8.7381369 11.2189626 15.4582107 13.9671153 10.9198431 7.4226559 2.4976895 2.8669131 3.4690388 3.1446396 2.3572089 1.6039741 |
12.9160252 20.0399975 22.7179659 20.5536305 16.1867972 12.0879224 2.6343264 3.0146144 3.3640472 3.2849235 2.7116128 2.3591945 |
0 0 0 0 0 0 0 0 0 0 0 0 |
129.0000000 312.0000000 386.0000000 288.0000000 225.0000000 121.0000000 16.0000000 17.0000000 19.0000000 19.0000000 18.0000000 19.0000000 |
We don't show details of all the checks that should be done to use the whole data set. No further data manipulation was needed to get these variables to agree with each other, since the bounds options in the fitting dealt with this.back to top
**** Now extract from PROC MIANALYZE that gives mean of each score. This for boys only.
Multiple Imputation Parameter Estimates - boys only | ||||||||||
Parameter | Estimate | Std Error | 95% Confidence Limits | DF | Minimum | Maximum | Theta0 | t for H0: Parameter=Theta0 |
Pr > |t| | |
dprev1 | 0.792051 | 0.008977 | 0.77443 | 0.80967 | 921.54 | 0.789402 | 0.794427 | 0 | 88.23 | <.0001 |
dprev2 | 0.780082 | 0.009068 | 0.76230 | 0.79787 | 1842.6 | 0.777067 | 0.781179 | 0 | 86.02 | <.0001 |
dprev3 | 0.816172 | 0.008442 | 0.79962 | 0.83273 | 2777.9 | 0.814070 | 0.818182 | 0 | 96.67 | <.0001 |
dprev4 | 0.789767 | 0.009087 | 0.77192 | 0.80761 | 609.95 | 0.788488 | 0.793970 | 0 | 86.91 | <.0001 |
dprev5 | 0.743353 | 0.013730 | 0.71387 | 0.77283 | 13.839 | 0.730471 | 0.753769 | 0 | 54.14 | <.0001 |
dprev6 | 0.705619 | 0.021761 | 0.65289 | 0.75835 | 6.2537 | 0.687072 | 0.724075 | 0 | 32.43 | <.0001 |
dvol1 | 11.359029 | 0.363039 | 10.63921 | 12.07885 | 105.28 | 11.201641 | 11.590776 | 0 | 31.29 | <.0001 |
dvol2 | 13.376945 | 0.472627 | 12.45045 | 14.30344 | 7037.6 | 13.315454 | 13.470026 | 0 | 28.30 | <.0001 |
dvol3 | 17.158250 | 0.521204 | 16.13587 | 18.18064 | 1464.6 | 17.000992 | 17.270864 | 0 | 32.92 | <.0001 |
dvol4 | 16.105710 | 0.506494 | 15.11183 | 17.09959 | 1030.5 | 16.037352 | 16.310184 | 0 | 31.80 | <.0001 |
dvol5 | 13.231412 | 0.702640 | 11.63692 | 14.82591 | 8.818 | 12.485495 | 13.958612 | 0 | 18.83 | <.0001 |
dvol6 | 9.779373 | 0.602592 | 8.36739 | 11.19136 | 7.3304 | 9.328909 | 10.556637 | 0 | 16.23 | <.0001 |
dvar1 | 3.021380 | 0.067738 | 2.88776 | 3.15500 | 189.11 | 2.995889 | 3.056647 | 0 | 44.60 | <.0001 |
dvar2 | 3.320512 | 0.070301 | 3.18272 | 3.45830 | 28137 | 3.308360 | 3.325263 | 0 | 47.23 | <.0001 |
dvar3 | 3.837825 | 0.079720 | 3.68140 | 3.99425 | 1053.8 | 3.813157 | 3.857012 | 0 | 48.14 | <.0001 |
dvar4 | 3.600183 | 0.079541 | 3.44411 | 3.75626 | 1059.6 | 3.583371 | 3.628598 | 0 | 45.26 | <.0001 |
dvar5 | 2.769575 | 0.100155 | 2.55299 | 2.98616 | 12.875 | 2.655094 | 2.816811 | 0 | 27.65 | <.0001 |
dvar6 | 2.027044 | 0.094958 | 1.81505 | 2.23904 | 9.8571 | 1.931932 | 2.122430 | 0 | 21.35 | <.0001 |
***** The rather small degrees of freedom for some estimates suggest that more imputations should have been run.
Multiple Imputation Parameter Estimates | ||||||||||
Parameter | Estimate | Std Error | 95% Confidence Limits | DF | Minimum | Maximum | Theta0 | t for H0: Parameter=Theta0 |
Pr > |t| | |
GENDERFemale | -0.182365 | 0.041632 | -0.26892 | -0.09581 | 21.084 | -0.224780 | -0.161694 | 0 | -4.38 | 0.0003 |
SZINDEPManual_high_depr | 0.023531 | 0.038324 | -0.05349 | 0.10055 | 48.769 | -0.008899 | 0.038867 | 0 | 0.61 | 0.5421 |
sectorBehavioural | 0.333826 | 0.276691 | -0.22171 | 0.88936 | 50.788 | 0.194677 | 0.522140 | 0 | 1.21 | 0.2332 |
sectorIndependent | 0.174445 | 0.141173 | -0.10283 | 0.45172 | 579.4 | 0.111849 | 0.197716 | 0 | 1.24 | 0.2171 |
sectorSpecial | -0.968083 | 0.314235 | -1.59229 | -0.34388 | 90.807 | -1.185340 | -0.867281 | 0 | -3.08 | 0.0027 |
back to top![]()
**** again detailed PROC MI output not shown. All variables had to sorted out - see program file ex6sas.htm
**** Mean of each score for boys only. From observed data only means for prevalence would be 0.7895 0.7768 0.81100 0.7812 0.7274 0.6340, Now prevalence at sweep 6 a bit higher but all others very similar. Same was true for the logistic regression.
Variable | N | Mean | Std Dev | Minimum | Maximum |
dvar1 dvol1 dvar2 dvol2 dvar3 dvol3 dvar4 dvol4 dvar5 dvol5 dvar6 dvol6 dprev1 dprev2 dprev3 dprev4 dprev5 dprev6 |
21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 21890 |
3.0243947 11.1868890 3.3406578 13.1315212 3.8855642 17.2696208 3.6707172 16.3657835 2.7711284 12.9211055 1.9160347 8.2956601 0.7943353 0.7833257 0.8160804 0.7919598 0.7492919 0.6772499 |
2.8326314 14.8583493 3.2371275 21.7437621 3.6090678 23.7630851 3.5963630 23.1447190 2.9182549 17.8732482 2.2316574 12.7468642 0.4041957 0.4119882 0.3874275 0.4059150 0.4334306 0.4675387 |
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
16.0000000 129.0000000 17.0000000 312.0000000 18.0000000 245.0000000 18.0000000 288.0000000 16.0000000 149.0000000 16.0000000 121.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 |
Logistic regressions also give almost the same answers as observed data and the much smaller imputation.
Multiple Imputation Parameter Estimates | ||||||||||
Parameter | Estimate | Std Error | 95% Confidence Limits | DF | Minimum | Maximum | Theta0 | t for H0: Parameter=Theta0 |
Pr > |t| | |
GENDERFemale | -0.188723 | 0.033577 | -0.25497 | -0.12248 | 183.13 | -0.198142 | -0.173784 | 0 | -5.62 | <.0001 |
SZINDEPManual_high_depr | 0.030178 | 0.037233 | -0.04452 | 0.10488 | 52.42 | 0.011207 | 0.050687 | 0 | 0.81 | 0.4213 |
sectorBehavioural | 0.252723 | 0.344938 | -0.51136 | 1.01681 | 10.452 | -0.032976 | 0.478006 | 0 | 0.73 | 0.4799 |
sectorIndependent | 0.207273 | 0.207319 | -0.25971 | 0.67426 | 9.2605 | 0.035661 | 0.377209 | 0 | 1.00 | 0.3428 |
sectorSpecial | -0.976275 | 0.352051 | -1.70360 | -0.24895 | 23.557 | -1.234814 | -0.786841 | 0 | -2.77 | 0.0107 |