
Module 5 - Ordinal Regression 

 

 

You can jump to specific pages using the contents list below. If you are new to this module 

start at the Introduction and work through section by section using the 'Next' and 'Previous' 

buttons at the top and bottom of each page. Be sure to tackle the exercise and the quiz to get 

a good understanding. 

 

Objectives 

1. Understand the principles and theories underlying Ordinal Regression 

 

2. Understand the assumption of Proportional Odds and how to test it 

 

3. Be able to implement Ordinal Regression analyses using SPSS and accurately 

interpret the output 

 

4. Be able to include interaction terms in your ordinal regression model and to accurately 

interpret the output 

 

5. Appreciate the applications of Ordinal Regression in education research and think 

about how it may be useful in your own research 
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5.1 Introduction 
 

In previous modules we have seen how we can use linear regression to model a continuous 

outcome measure (like age 14 test score), and also logistic regression to model a binary 

outcome (like achieving 5+ GCSE A*-C passes). However you will remember from the 

Foundation Module that we typically define measures at three levels: nominal, ordinal and 

continuous. What we have not covered therefore is this „intermediate‟ level where our 

outcome is ordinal. You will remember that an ordinal measure includes information on rank 

ordering within the data. For example we might have Likert scale measures such as “How 

strongly do you agree that you love statistics” which may be rated on a 5 point scale ranging 

from strongly disagree (1) to strongly agree (5). Another example is OFSTED (Office for 

Standards in Education) lesson evaluations which may be graded as „unsatisfactory‟, 

„satisfactory‟, „good‟ or „outstanding‟. Such examples are common in the social sciences. 

 

There are a number of ordinal outcomes in our LSYPE dataset. One is the KS3 (age 14) 

English test level. In England students‟ performance is recorded in terms of national 

curriculum (NC) levels. These levels are reported on an age related scale, with the „typical‟ 

student at age 7 expected to achieve level 2, at age 9 level 3, at age 11 level 4, and at age 14 

somewhere between level 5 and level 6.  These levels may be determined through teacher 

assessment or be expressed as summaries from continuous test marks. Figure 5.1.1 shows 

the distribution of students by English level from our dataset.  

 

Figure 5.1.1 Proportion of students at each English test level 

 

 

 

We do have access to the actual test marks in LSYPE, but often test marks are not available 

and NC levels might be the only data recorded. In any event, this is a good example of an 



ordinal outcome which we can work with to demonstrate the particular analyses that you can 

apply when your outcome measure is ordinal.  

 

The good news is that, bar a little extra work, the assumptions and concepts we need for 

ordinal regression have been dealt with in the Logistic Regression Module (Phew!). The key 

concepts of odds, log-odds (logits), probabilities and so on are common to both analyses. It is 

absolutely vital therefore that you do not undertake this module until you have completed 

the logistic regression module, otherwise you will come unstuck. This module assumes that 

you have already completed Module 4 and are familiar with undertaking and interpreting 

logistic regression. 

 



5.2 Working with ordinal outcomes 

 

There are three general ways we can approach modelling of an ordinal outcome: 

 

A) Treat the outcome as a continuous variable 

You may look at Figure 5.1.1 and ask why you cannot treat this as a continuous variable and 

use linear regression analysis. After all, there are a reasonable range of categories (five), with 

a fair spread of observations over all the categories and an approximately normal distribution. 

While this may not be unreasonable in this particular case, it does mean making assumptions 

about continuity in the data which are not strictly verifiable, and of course a mean level is not 

what we want to predict when our outcome is strictly ordinal (for example a student cannot 

achieve level 3.75 or level 4.63 in the National Curriculum in England - levels can only be 

awarded as whole numbers; 4, 5, 6 etc.). There are many other cases and examples where 

the linear assumption will not hold, where there are fewer than five categories or an uneven 

distribution across categories, or it is unreasonable to suppose an underlying continuous 

distribution. In such cases the choice of ordinal regression may be even clearer! 

 

B) Treat the outcome as a series of binary logistic equations 

We could treat the analysis as a series of logistic regressions by splitting or cutting the 

distribution at key points. This is illustrated in Figure 5.2.1. 

 
Figure 5.2.1: Four different ways to split the English NC level outcome 

English national curriuculum level achieved

3 4 5 6 7

13116  Level 7+ 1347 9.3%

9545  Level 6+ 4918 34.0%

3814  Level 5+ 10649 73.6%

1480  Level 4+ 12983 89.8%

14463 100.0%

N cases 

below 

level

N cases at 

or above 

level

% of cases 

at or above 

level

 

 

For example, we may consider comparing those students who have achieved level 7 versus 

those who have not using a logistic regression. We might want to ask whether girls were more 

likely to achieve this level of success than boys, or whether there are ethnic or social class 

differences in the probability of achieving level 7. We can do the same thing for those who 



achieve level 6 or above, compared to those who achieve below level 6. Again this is a binary 

logistic regression, splitting the sample into two, only this time in a different place. The same 

can be done to compare the probability of achieving level 5 or above, and again for the 

probability of achieving level 4 or above. In each case we complete a binary logistic 

regression to evaluate the effect of our explanatory variables on the likelihood of success at 

different thresholds (level 4+, level 5+, level 6+ and level 7). Note we do not need a category 

for level 3+ because this includes all (100%) of the cases in our data. 

 

Essentially we have turned our outcome into a series of binary measures reflecting the 

cumulative outcomes at different thresholds. However estimating four separate binary logistic 

regression equations is wasteful of the information on ordinality in our outcome and may lead 

to estimating more parameters than are necessary to account for the relationships between 

our explanatory variables and the outcome (four sets of estimated regression coefficients 

rather than one set). What we want ideally is a single model of the effect of our explanatory 

variables on the outcome which utilises the ordinality present in the outcome variable.  

 

C) Model the ordinality in the outcome 

In ordinal regression instead of modelling the probability of an individual event, as we do in 

logistic regression, we are considering the probability of that event and all others above it in 

the ordinal ranking. We are concerned with cumulative probabilities rather than probabilities 

for discrete categories. If a single model could be used to estimate the odds of being at or 

above a given threshold across all cumulative splits, the model would offer far greater 

parsimony compared to fitting multiple (in the case of our English level example, four) 

separate logistic regression models corresponding to the sequential splits in the distribution as 

illustrated above. The goal of such a cumulative odds model is to simultaneously consider the 

effects of a set of explanatory variables across these possible consecutive cumulative splits in 

the outcome. To do this we make the simplifying assumption that the effects of our 

explanatory variables are the same across the different thresholds, the assumption of 

proportional odds.  If this assumption is met there is much to gain from a single parsimonious 

model, as we shall see. Let us now look at this important assumption of proportional odds in 

more detail. 

 



5.3 Key assumption of ordinal regression 

 

Overview 

What do we mean by the assumption of proportional odds (PO)?  To explain this we need to 

think about the cumulative odds. Figure 5.3.1 takes the data from Figure 5.1.1 to show the 

number of students at each NC English level, the cumulative number of students achieving 

each level or above and the cumulative proportion. Remember proportions are just the % 

divided by 100. We can see that the proportion achieving level 7 is 0.09 (or 9%), the 

proportion achieving level 6 or above is 0.34 (34%) and so on. 

 

From this we can calculate the cumulative odds of achieving each level or above (if you 

require a reminder on odds and exponents why not check out Page 4.2?). 1,347 students 

achieved level 7 compared to 13,116 who achieved level 6 or below. Therefore the odds of 

achieving level 7 are 1,347/13,116 = 0.10. Similarly the odds of being at level 6 or above are 

4918 / 9545 = .52. The odds of achieving level 6 or above are about half that of achieving 

level 5 or below.  If you are getting confused about the difference between odds and 

proportions remember that odds can be calculated directly from proportions by the formula p / 

(1-p). Therefore the cumulative odds of achieving level 7 are .09 / (1-.09) = 0.10. Similarly the 

cumulative odds of achieving level 6 or above are .34 / (1-0.34) =.52. We can do the same to 

find the cumulative odds of achieving level 5 or above (2.79) and level 4 or above (8.77). We 

do not need to calculate the cumulative odds for level 3 or above since this includes the whole 

sample, i.e. the cumulative proportion is 1 (or 100%). As you can see we have essentially 

divided our ordinal outcome variable in to four thresholds. 

 

Table 5.3.1: Cumulative odds for English level 

English level 3 4 5 6 7 

Number students 1480 2334 5731 3571 1347 

Cumulative N at each level or above 14463 12983 10649 4918 1347 

Cumulative proportion    1.00    0.90 0.74 0.34 0.09 

Cumulative odds -    8.77 2.79 0.52 0.10 

Cumulative logits - 2.17 1.03 -0.66 -2.28 

 

In the table we have also shown the cumulative log-odds (logits), this is just the natural log of 

the cumulative odds1 which you can calculate in EXCEL or a scientific calculator. Log odds 

                                                
1
 If you want to use the LOG function in EXCEL to find the logit for the odds remember you need to 

explicitly define the base as the natural log (approx. 2.718) e.g. =LOG(odds,2.718) 



rather than odds are used in ordinal regression for the same reason as in logistic regression 

(i.e. they do not suffer from the ceiling and floor effects that odds do, you should remember 

this from Module 4). 

 

The key assumption in ordinal regression is that the effects of any explanatory variables are 

consistent or proportional across the different thresholds, hence this is usually termed the 

assumption of proportional odds (SPSS calls this the assumption of parallel lines but it‟s the 

same thing). This assumes that the explanatory variables have the same effect on the odds 

regardless of the threshold. For example if a set of separate binary logistic regressions were 

fitted to the data, a common odds ratio for an explanatory variable would be observed across 

all the regressions. In ordinal regression there will be separate intercept terms at each 

threshold, but a single odds ratio (OR) for the effect of each explanatory variable. This is best 

explained by an example. 

 

As example using gender and English NC level 

As a simple example let‟s start by just considering gender as an explanatory variable. Before 

you start building your model you should always examine your „raw‟ data. Figure 5.3.2 shows 

the cross tabulation of English level by gender. 

 

Figure 5.3.2: Gender by English level crosstabulation 

 

 

Clearly girls tend to achieve higher outcome levels in English than boys. What does this look 

like in terms of the cumulative proportions and cumulative odds? In Figure 5.3.3 we calculate 

the cumulative odds separately for boys and for girls. 

 



Figure 5.3.3: Cumulative odds for English NC level separately for boys and girls 

Boys 3 4 5 6 7 

Cumulative N boys 7177 6210 4838 2003 503 

Cumulative proportion 1.00 0.87 0.67 0.28 0.07 

Cumulative odds - 6.42 2.07 0.39 0.08 

Cumulative logits - 1.86 0.73 -0.95 -2.59 

      Girls 3 4 5 6 7 

Cumulative N girls 6987 6525 5621 2841 826 

Cumulative proportion 1.00 0.93 0.80 0.41 0.12 

Cumulative odds - 14.12 4.11 0.69 0.13 

Cumulative logits - 2.65 1.41 -0.38 -2.01 

      Odds Ratio (Girls/Boys) - 2.20 1.99 1.77 1.78 

Odds Ratio (Boys/Girls)   0.45 0.50 0.56 0.56 

 

We can calculate odds ratios by dividing the odds for girls by the odds for boys. In general the 

odds for girls are always higher than the odds for boys, as proportionately more girls achieve 

the higher levels than do boys. These odds ratios do vary slightly at the different category 

thresholds, but if these ratios do not differ significantly then we can summarise the 

relationship between gender and English level in a single odds ratio and therefore justify the 

use of an ordinal (proportional odds) regression. If we do calculate the odds ratio from an 

ordinal regression model (as we will do below) this gives us an OR of 0.53 (boys/girls) or 

equivalently 1.88 (girls/boys), which is not far from the average across the four thresholds. 

This assumes the odds for girls of achieving level 4+ are 1.88 greater than the odds for boys; 

the odds of girls achieving level 5+ are 1.88 times greater than the odds for boys, and so on 

for level 6+ and level 7... i.e. that the odds of success for girls are almost twice the odds of 

success for boys, wherever you split the cumulative distribution (that is to say, whatever 

threshold you are considering). SPSS has a statistical test to evaluate the plausibility of this 

assumption, which we discuss on the next page (Page 5.4). 

 



5.4 Running an ordinal regression on SPSS 

 

So let‟s see how to complete an ordinal regression in SPSS, using our example of NC English 

levels as the outcome and looking at gender as an explanatory variable. 

 

Data preparation 

Before we get started, a couple of quick notes on how the SPSS ordinal regression procedure 

works with the data, because it differs from logistic regression. First, for the dependent 

(outcome) variable, SPSS actually models the probability of achieving each level or below 

(rather than each level or above). This differs from our example above and what we do for 

logistic regression. However this makes little practical difference to the calculation, we just 

have to be careful how we interpret the direction of the resulting coefficients for our 

explanatory variables. Don‟t worry; this will be clear in the example. Second, for categorical 

(nominal or ordinal) explanatory variables, unlike logistic regression, we do not have the 

option to directly specify the reference category (LAST or FIRST, see Page 4.11) as SPSS 

ordinal automatically takes the LAST category as the reference category.  So for our gender 

variable (scored boys=0, girls=1) girls will be the reference category and the coefficients will 

be for boys. Again this is not a huge problem because if we want to we can simply RECODE 

our variables to force a particular category as the reference category (e.g. if we wanted boys 

to be the reference category we could recode gender so girls=0 and boys=1). It is, however, 

slightly fiddly and annoying! 

 

Requesting an ordinal regression 

You access the menu via: Analyses > Regression > Ordinal. The window shown below 

opens. Move English level (k3en) to the „Dependent‟ box and gender to the „Factor(s)‟ box. 

 

 



Next click on the „Output‟ button. Here we can specify additional outputs. Place a tick in Cell 

Information. For relatively simple models with a few factors this can help in evaluating the 

model. However, this is not recommended for models with many factors or for models with 

continuous covariates, since such models typically result in very large tables which are often 

of limited value in evaluating the model because they are so extensive (they are so extensive, 

in fact, that they are likely to cause severe mental distress). Also place a tick in the Test of 

parallel lines box. This is essential as it will ask SPSS to perform a test of the proportional 

odds (or parallel lines) assumption underlying the ordinal model (see Page 5.3). 

 

 

You also see here options to save new variables (see under the „Saved Variables‟ heading) 

back to your SPSS data file. This can be particularly useful during model diagnostics. Put a 

tick in the Estimated response probabilities box. This will save, for each case in the data file, 

the predicted probability of achieving each outcome category, in this case the estimated 

probabilities of the student achieving each of the levels (3, 4, 5, 6 and 7). 

 

That is all we need to change in this example so click Continue to close the submenu and 

then OK on the main menu to run the analysis... 

 

Examining the SPSS ordinal output 

Several tables of thrilling numeric output will pour forth in to the output window. Let‟s work 

through it together. Figure 5.4.1 shows the Case processing summary. SPSS clearly labels 

the variables and their values for the variables included in the analysis. This is important to 

check you are analysing the variables you want to. Here I can see we are modelling KS3 

English level in relation to gender (with girls coded 1).  



 

Figure 5.4.1: Case Processing Summary 

 

 
Figure 5.4.2 shows the Model fitting information. Before we start looking at the effects of each 

explanatory variable in the model, we need to determine whether the model improves our 

ability to predict the outcome. We do this by comparing a model without any explanatory 

variables (the baseline or „Intercept Only‟ model) against the model with all the explanatory 

variables (the „Final‟ model - this would normally have several explanatory variables but at the 

moment it just contains gender). We compare the final model against the baseline to see 

whether it has significantly improved the fit to the data. The Model fitting Information table 

gives the -2 log-likelihood (-2LL, see Page 4.6) values for the baseline and the final model, 

and SPSS performs a chi-square to test the difference between the -2LL for the two models.   

 

Figure 5.4.2: Model Fit 

 
The significant chi-square statistic (p<.0005) indicates that the Final model gives a significant 

improvement over the baseline intercept-only model. This tells you that the model gives better 

predictions than if you just guessed based on the marginal probabilities for the outcome 

categories.  

 
The next table in the output is the Goodness-of-Fit table (Figure 5.4.3). This table contains 

Pearson's chi-square statistic for the model (as well as another chi-square statistic based on 

the deviance). These statistics are intended to test whether the observed data are consistent 

with the fitted model. We start from the null hypothesis that the fit is good. If we do not reject 

this hypothesis (i.e. if the p value is large), then you conclude that the data and the model 

predictions are similar and that you have a good model. However if you reject the assumption 



of a good fit, conventionally if p<.05, then the model does not fit the data well. The results for 

our analysis suggest the model does not fit very well (p<.004). 

 

Figure 5.4.3: Goodness of fit test 

 

We need to take care not to be too dogmatic in our application of the p<.05 rule. For example 

the chi-square is highly likely to be significant when your sample size is large, as it certainly is 

with our LSYPE sample of roughly 15,000 cases. In such circumstances we may want to set a 

lower p-value for rejecting the assumption of a good fit, maybe p<.01. More importantly, 

although the chi-square can be very useful for models with a small number of categorical 

explanatory variables, they are very sensitive to empty cells. When estimating models with a 

large number of categorical (nominal or ordinal) predictors or with continuous covariates, 

there are often many empty cells (as we shall see later). You shouldn't rely on these test 

statistics with such models. Other methods of indexing the goodness of fit, such as measures 

of association, like the pseudo R2, are advised. 

 

In linear regression, R2 (the coefficient of determination) summarizes the proportion of 

variance in the outcome that can be accounted for by the explanatory variables, with larger R2 

values indicating that more of the variation in the outcome can be explained up to a maximum 

of 1 (see Module 2 and Module 3). For logistic and ordinal regression models it not possible 

to compute the same R2 statistic as in linear regression so three approximations are computed 

instead (see Figure 5.4.4). You will remember these from Module 4 as they are the same as 

those calculated for logistic regression.  

 

Figure 5.4.4: Pseudo R-square Statistics 

 

What constitutes a “good” R2 value depends upon the nature of the outcome and the 

explanatory variables. Here, the pseudo R2 values (e.g. Nagelkerke = 3.1%) indicates that 

gender explains a relatively small proportion of the variation between students in their 

attainment. This is just as we would expect because there are numerous student, family and 

school characteristics that impact on student attainment, many of which will be much more 

important predictors of attainment than any simple association with gender. The low R2 

indicates that a model containing only gender is likely to be a poor predictor of the outcome 



for any particular individual student. Note though that this does not negate the fact that there 

is a statistically significant and relatively large difference in the average English level achieved 

by girls and boys.  

 

The Parameter estimates table (Figure 5.4.5) is the core of the output, telling us specifically 

about the relationship between our explanatory variables and the outcome.  

 

Figure 5.4.5: Parameter Estimates Table 

 

The threshold coefficients are not usually interpreted individually. They just represent the 

intercepts, specifically the point (in terms of a logit) where students might be predicted into the 

higher categories. The labelling may seem strange, but remember the odds of being level 6 or 

below (k3en=6) is just the complement of the odds of being level 7; the odds of being level 5 

or below (k3en=5) are just the complement of the odds of being level 6 or above, and so on. 

While you do not usually have to interpret these threshold parameters directly we will explain 

below what is happening here so you understand how the model works. The results of our 

calculations are shown in Figure 5.4.6. 

 

Let‟s start with girls. Since girls represent our base or reference category the cumulative logits 

for girls are simply the threshold coefficients printed in the SPSS output (k3en = 3, 4, 5, 6). 

We take the exponential of the logits to give the cumulative odds (co) for girls. Note that these 

do not match the cumulative logits and odds we showed in Figure 5.3.3 because, as 

explained above, SPSS creates these as the odds for achieving each level or below as 

opposed to each level or above and because the reference category is boys not girls. 

However once these logits are converted to cumulative proportions/probabilities you can see 

they are broadly equivalent in the two tables (bar some small differences arising from the 

assumption of proportional odds in the ordinal model, more on which later). We calculate the 

predicted cumulative probabilities from the cumulative odds (co) simply by the formula 

1/(1+co). If we want to find the predicted probability of being in a specific outcome category 

(e.g., at a specific English level) we can work out the category probability by subtraction. So if 

the probability of being at level 7 is 0.12 (or 12%), and the probability of being at level 6 or 



above is 0.41 (or 41%), then the probability of being specifically at level 6 is .41 - .12 = .29 (or 

29%). Similarly the predicted probability for being specifically at Level 5 for girls is .80 - .41 = 

.39 (39%) and at level 4 it is .93 - .80 = .13 (13%). Finally the probability of being at level 3 is 1 

- .93 = .07 (7%). 

 

Figure 5.4.6: Parameters from the ordinal regression of gender on English level.  

English level

Boys 3 4 5 6 7

Cumulative logit - -1.914 -0.747 0.983 2.617

Cumulative odds [exp(Cum.logit )] - 0.15 0.47 2.67 13.69

Cumulative proportion [1/(1+exp(Cum.logit )] 1.00 0.87 0.68 0.27 0.07

Category probability 0.13 0.19 0.41 0.20 0.07

Girls 3 4 5 6 7

Cumulative logit - -2.543 -1.376 0.354 1.988

Cumulative odds [exp(Cum.logit )] - 0.08 0.25 1.42 7.30

Cumulative proportion [1/(1+exp(Cum.logit )] 1.00 0.93 0.80 0.41 0.12

Category probability 0.07 0.13 0.39 0.29 0.12

Odds Ratio (Girls/Boys) - 0.53 0.53 0.53 0.53

Odds Ratio (Boys/Girls) 1.88 1.88 1.88 1.88

 

 

To calculate the figures for boys (gender=0) we have to combine the parameters for the 

thresholds with the gender parameter (-.629, see Figure 5.4.5). Usually in regression we add 

the coefficient for our explanatory variable to the intercept to obtain the predicted outcome 

(e.g. y = a + bx, see modules 2 & 3). However in SPSS ordinal regression the model is 

parameterised as y = a - bx. This doesn‟t make any difference to the predicted values, but is 

done so that positive coefficients tell you that higher values of the explanatory variable are 

associated with higher outcomes, while negative coefficients tell you that higher values of the 

explanatory variable are associated with lower outcomes. So for example the cumulative logit 

for boys at „level 4+‟ is -2.543 - (-.629) = -1.914, at level 5+ it is -1.376 - (-.629) = -.747 and so 

on. Then, just as for girls, the cumulative odds (co) are the exponent of the logits, the 

cumulative proportions are calculated as 1/(1+co), and the category probabilities are found by 

subtraction in the same way as described for girls. Phew!  

 

Odds Ratios 

We can divide the odds for girls by the odds for boys at each cumulative split to give the OR 

(see Figure 5.4.6). We can see that in the proportional odds model the OR is constant (0.53) 

at all cumulative splits in the data (the odds of boys achieving a higher level are approximately 

half the odds for girls).  We can express the OR the other way round by dividing the odds for 



boys by the odds for girls which gives us the OR of 1.88 (the odds for girls of achieving a 

higher level are approximately twice the odds for boys). As we saw in Module 4 these OR of 

0.53 and 1.88 are equivalent, they just vary depending on the reference category. (see 

Extension D - you can convert an OR to its complement by dividing the OR into 1, e.g.  

1/0.53= 1.88, equally 1/1.88=0.53). The important thing to note here is that the gender OR is 

consistent at each of the cumulative splits in the distribution. 

 

The above was completed just to demonstrate the proportional odds principle underlying the 

ordinal model. In fact we do not have to directly calculate the ORs at each threshold as they 

are summarised in the parameter for gender. This shows the estimated coefficient for gender 

is -.629 and we take the exponent of this to find the OR with girls as the base: exp(-.629)
 
= 

0.53. To find the complementary OR with boys as the base just reverse the sign of the 

coefficient before taking the exponent, exp(.629)=1.88. The interpretation of these ORs is as 

stated above.  

 
Test of parallel lines 

Remember that the OR is equal at each threshold because the ordinal model has constrained 

it to be so through the proportional odds (PO) assumption. We can evaluate the 

appropriateness of this assumption through the „test of parallel lines‟. This test compares the 

ordinal model which has one set of coefficients for all thresholds (labelled Null Hypothesis), to 

a model with a separate set of coefficients for each threshold (labelled General).  If the 

general model gives a significantly better fit to the data than the ordinal (proportional odds) 

model (i.e. if p<.05) then we are led to reject the assumption of proportional odds. This is the 

conclusion we would draw for our example (see Figure 5.5.7), given the significant value as 

shown below (p<.004). 

Figure 5.4.7: Test of Parallel Lines 

 
Note: The sharp-eyed among you may have noted that the chi-square statistics given above for the 
Test of Parallel Lines is exactly the same as that given for the omnibus test of the ‘goodness of fit’ of 
the whole model. This is because we have only a single explanatory variable in our model, so the two 
tests are the same. However when we have multiple explanatory variables this will not be the case. 

 

We can see why this is the case if we compare our OR from the ordinal regression to the 

separate ORs calculated at each threshold in Figure 5.3.3. While the odds for boys are 

consistently lower than the odds for girls, the OR from the ordinal regression (0.53) 

underestimates the extent of the gender gap at the very lowest level (Level 4+ OR = 0.45) and 



slightly overestimates the actual gap at the highest level (level 7 OR =.56). We see how this 

results in the significant chi-square statistic in the „test for parallel lines‟ if we compare the 

„observed‟ and „expected‟ values in the „cell information‟ table you requested, shown below as 

Figure 5.4.8. The use of the single OR in the ordinal model leads to predicting fewer boys and 

more girls at level 3 than is actually the case (shown by comparing the „expected‟ numbers 

from the model against the „observed‟ numbers).  

 
Figure 5.4.8: Output for Cell Information 

 

However the test of the proportional odds assumption has been described as anti-

conservative, that is it nearly always results in rejection of the proportional odds assumption 

(O‟Connell, 2006, p.29) particularly when the number of explanatory variables is large (Brant, 

1990), the sample size is large (Allison, 1999; Clogg & Shihadeh, 1994) or there is a 

continuous explanatory variable in the model (Allison, 1999). It is advisable to examine the 

data using a set of separate logistic regression equations to explicitly see how the ORs vary at 

the different thresholds, as we have done in Figure 5.3.3. In this particular case it might be 

reasonable to conclude that the OR for gender from the PO model (0.53) - while it does 

underestimate the extent of the over-representation of boys at the lowest level - does not 

differ hugely from those of the separate logistic regressions (0.45-0.56) and so is a 

reasonable summary of the trend across the data. Here the statistical test that led to the 

rejection of the PO assumption probably reflects the large sample size in our LYPSE dataset. 

 
Predicted probabilities 

Figure 5.4.6 showed how from the model we can calculate the cumulative proportion at each 

threshold and, by subtraction, the predicted probability of being at any specific level. However 

you don‟t actual have to do any of these calculations to determine the predicted probabilities 

since we requested SPSS to save the estimated probabilities for each case. We have five 

possible outcomes (level 3 to level 7) so SPSS will save the predicted probabilities for each 

case in five new variables that by default will be labelled EST1_1 to EST5_1. The first number 

refers to the category where 1 will indicate the lowest value for our ordinal outcome (i.e. level 

3) and 5 will indicate the highest value (i.e. level 7). The second number after the underscore 



(_1) indicates these are the predictions from the first model we have run. If we added some 

more explanatory variables and ran a second model, without first deleting the variables 

holding estimated probabilities from the first model, then the predictions from the second 

model would have the suffix _2, i.e.  EST1_2, EST2_2, EST3_2 etc. If you do intend to run 

multiple models it may be worth renaming these variables or labelling them carefully so that 

you do not lose track! 

 

We can use these estimates to explore the predicted probabilities in relation to our 

explanatory variables. For example we can use the MEANS command (Analyze>Compare 

Means>Means) to report on the estimated probabilities of being at each level for boys and 

girls. The output is shown below (Figure 5.4.9): 

 

Figure 5.4.9: Estimated probabilities for boys and girls from the ordinal regression 

 
Note: the SD is zero in all cells because, with gender being the only explanatory variable in the model, 
all males will have the same predicted probabilities within each outcome category, and all females will 
also have the same predicted probabilities within each outcome category. 

 

The ability to summarise and plot these predicted probabilities will be quite useful later on 

when we have several explanatory variables in our model and want to visualise their 

associations with the outcome.  

 

Summary 

We have seen that where we have an ordinal outcome there is value in trying to summarise 

the outcome in a single model, rather than completing several separate logistic regression 

models. However we have also seen that this can overly simplify the data and it is important 

to complete the separate logistic models to fully understand the nuances in our data. For 

example, here the ordinal (PO) model did not identify the true extent to which boys were over-



represented relative to girls at the lowest level. We should always complete separate logistic 

regressions if the assumption of PO is rejected. In the particular example used here it might 

be reasonable to conclude that the OR for gender from the ordinal (PO) model (0.53) does not 

differ hugely from those of the separate logistic regressions (0.45-0.56) and so is a 

reasonable summary of the trend across the data.  However you are only in a position to 

conclude this if you have completed the separate logistic models, so in practice our advice is 

always to do the separate logistic models when the PO assumption is formally rejected. Given 

the anti-conservative nature of the test of the proportional odds assumption (O‟Connell, 2006) 

this will more often than not be the case. Let us now move on to consider models which have 

more than one explanatory variable. 



5.5 An extended example - Teacher expectations and tiering 

 

We will now complete a more complex ordinal regression employing multiple explanatory 

variables. For this example we are going to use a different outcome variable, the mathematics 

test tier that teachers entered the student for. We give the background to this example below: 

 

Tiering structure in national tests at age 14 

As we said earlier, at the time they were recruited to LSYPE all students in England 

completed national tests in English, mathematics and science at the end of Year 9 (age 14). 

These tests awarded pupils a National Curriculum (NC) level with the „typical‟ student at age 

14 expected to achieve Level 5 or Level 6. The range of levels that can be awarded at age 14 

range from 3-7, although a Level 8 can be awarded specifically in the mathematics test. In 

some subjects there are different tests to reflect different levels of ability. These different tests 

are organized into „tiers‟.  

 

There are no tiering arrangements for national tests in English at age 14 - all students sit the 

same test papers. In Science there are only two tiers (a lower tier covering levels 3-6 and a 

higher tier covering levels 5-7). However for mathematics there are four test tiers covering 

levels 3-5, 4-6, 5-7 and 6-8 respectively. Importantly each tier has different test papers 

targeted at a restricted set of levels. This is summarised in Figure 5.5.1. For example, the 

highest outcome (Level 8) can only be achieved if the student is entered by their teacher for 

the highest (6-8) tier. Equally Level 7 can only be achieved if the student is entered for either 

of the two highest tiers (tier 5-7 or tier 6-8). Importantly which tier a student is entered for is a 

matter for the professional judgment of the teacher. This is quite a „high-stakes‟ judgment 

since an unclassified (U) grade results if a student entered for a higher tier fails to achieve the 

expected level. Equally, placing the student in too low a tier can prevent them from getting the 

maximum grade they may be capable of. This judgement may well be influenced by other 

factors determining the teacher‟s perceptions of how students will cope with the demands 

made on them by the content and structure of the tests. 

 

Table 5.5.1: Tiering structure for age 14 national tests in mathematics 

Subject Tier Awardable NC levels 

Mathematics Tier 3-5 U 3 4 5    

 Tier 4-6 U 3 4 5 6   

 Tier 5-7 U  4 5 6 7  

 Tier 6-8 U   5 6 7 8 



Notes: The numbers indicate National Curriculum (NC) levels that can be achieved through the relevant 
tier. U = unclassified result. 

 

The essential point is that the outcome a student can achieve in the mathematics test will be 

constrained by the tier their teacher has entered them for, and there are social processes that 

may influence this decision. The research questions we want to address are: 

 Are students from different ethnic, socio-economic and gender groups equally likely to 

be entered for the higher tiers by their teachers? 

 If there are variation between ethnic, social and gender groups in the pattern of entry 

to different tiers, can these patterns be explained by other factors such as the prior 

attainment of the students? 

  

Descriptive statistics 

Figure 5.5.2 below shows the proportion of LSYPE students entered for each mathematics 

test tier. The table was generated by requesting FREQUENCIES (Analyze>Descriptive 

Statistics>Frequencies) for the variable k3matier and using the „Format‟ button to request it 

to be „Ordered by‟ descending values.  

 

Figure 5.5.2: Frequency distribution in entry to different mathematics test tiers 

 

Overall 16.3% of students are entered for tier 6-8, 27.9% for tier 5-7, 30.9% for tier 4-6 and 

22.0% for tier 3-5. As shorthand, we shall call these top, upper, lower and bottom tiers 

respectively. Cumulatively 16.3% are entered for the top tier, 44.3% for the upper tier or 

above and 78% for the lower tier or above. What we want to establish in the ordinal 

regression is whether there is any systematic relationship between our explanatory variables 

(SEC, ethnic group and gender) and the probability of being entered to a higher tier. 

 

So do tier entry rates vary by our equity factors? The first step, as ever, is just some simple 

bivariate analyses (crosstabs) to see what patterns exist in the data (Figure 5.5.3, Figure 

5.5.4 and Figure 5.5.5). The data show a strong association between ethnic group and tier of 

entry. Students of Mixed Heritage and Any Other ethnic group do not differ greatly from White 



British, and Indian students appear more likely than White British students to be entered for 

the higher tiers. However, while 47% of White British students are entered for the upper and 

top tiers, only 35% of Bangladeshi and Black African students, 33% of Pakistani students and 

27% of Black Caribbean students are entered for these two tiers.  

 
Figure 5.5.3: Tier entry by ethnic group 

 
There is also a strong association with the SEC of the home. Thus while 69% of students from 

higher managerial & professional homes are entered for the upper and top tiers, only 24% of 

children from the lowest SEC homes are entered. 

 
Figure 5.5.4: Tier entry by socio-economic classification (SEC) 

 

The gender difference is small relative to the SEC and ethnic group differences. The pattern 

of gender entry seems to vary by tier, so boys are both more likely than girls to be entered for 

the lowest tier (22.9% vs 20.7%) and also more likely to be entered for the highest tier (17.3% 

vs. 15.6%). 

 

 
 



Figure 5.5.5: Tier entry by gender. 

 

What we do not know from these simple bivariate relationships is how our variables interrelate 

when considered together, to do this we need to build a model. Our primary focus in the 

analysis is to explore the ethnic group differences in tier entry rates, to try and understand 

why ethnic minority students are so much less likely to be entered for the higher tiers, and to 

see whether the association seen above can be explained by other variables in the dataset. 

 



5.6 Running an ordinal regression for mathematics tier of entry 

 

Data preparation 

Remember that we said that SPSS ordinal would automatically make the reference category 

for a nominal explanatory variable the last category. We want the reference group for ethnicity 

to be White British as this is the majority ethnic group, but White British students are currently 

coded 0 in the variable ethnic. We therefore need to RECODE (we discuss recoding variables 

in the Foundation Module) the ethnic variable so that White British are coded 8, and hence 

the last category. If you do this and call your new variable ethnic2 then a frequency table 

should give you the output shown below in Figure 5.6.1. 

 
Figure 5.6.1: Frequency Table for recoded Ethnicity Variable 

 

 
We are also going to take advantage of the fine-grained hierarchical nature of the SEC 

variable to treat this as a continuous variable. It is helpful in all forms of regression if the zero 

value of a continuous explanatory variable (or covariate) has an interpretable meaning, and 

this is particularly the case in logistic and ordinal regression. We have therefore recoded SEC 

so zero is a meaningful category (the highest level of SEC, higher managerial and 

professional homes) and have called this recoded variable Sec2. (If you are unsure how to do 

this we explain the process in the text surrounding Figure 5.7.4)  The frequencies for Sec2 

are displayed in Figure 5.6.2. 

 



Figure 5.6.2: Frequency Table for recoded SEC Variable 

 

 
 

Specifying the ordinal regression 

We request an ordinal regression as we did earlier, through Analyse > Regression > 

Ordinal. We enter k3matier as our Dependent variable. Categorical (nominal or ordinal) 

explanatory variables are entered to the Factor(s) box, so this is where we enter ethnic2 and 

gender. Continuous explanatory variables (in this case sec2) are entered as covariates. 

  

 

 

Interpreting the results 

The case processing summary is a reminder of the variables we have entered (Figure 5.6.3), 

note though that it does not display any covariates in the model.  Note that SPSS also issues 



a warning that there are “20 (3.9%) cells with zero frequencies”. This just means that even 

with 11,601 cases there are some combinations of variables that are not represented (for 

example there are no Bangladeshi, boys, from higher managerial and professional homes 

entered for the bottom tier). This does not mean we cannot complete an analysis; there may 

be sound empirical reasons for low counts in some cells. However we should consider the 

proportion of empty cells when we come to evaluating the goodness-of-fit test. 

 

Figure 5.6.3: Case Processing Summary 

 
Let‟s look at the Parameter Estimates table (Figure 5.6.4). The model confirms there are 

systematic effects in tier of entry related to SEC and to ethnic group. In relation to Sec2 the 

coefficient is -.278. We take the exponent of this coefficient to get the OR: exp(-.278)=.78, 

which indicates that odds of being entered for a higher  tier decrease by 0.78 for each unit 

increase in Sec2 score (remember higher values of SEC indicate lower SEC homes).  

Conversely we could say the odds of being entered to a higher tier increase by (1/0.78)=1.33 

for ever unit change in Sec2 score. To calculate the predicted OR at any point on the SEC 

scale we can multiply the coefficient by the relevant Sec2 score and take the exponent of the 

result. For example the OR for students from the lowest social class category (7=long term 

unemployed) is exp(-0.78 * 7) = 0.143. Students from homes where the main parent is long 

term unemployed are only .14 as likely to be entered for a higher tier compared to the odds for 

a student from the higher managerial and professional home. To express this as the OR in 

favour of high SEC (1/.143=7.00) indicating students from the highest SEC are 7 times more 

likely than students from the lowest SEC to be entered for a higher tier. 



Figure 5.6.4: Parameter Estimates for the Model 

 
 

There is also a strong association between ethnic group and tier entry, even after SEC has 

been controlled. We can see significant and negative coefficients for Black Caribbean, Black 

African and Pakistani students. Again taking the exponent of the logits will give the OR, so for 

example the odds of Black Caribbean (ethnic=5) students being entered for a higher tier are 

exp(-.853)= 0.43 the odds for White British students, or less than half. Conversely there is a 

significant positive coefficient for Indian students (.410) indicating they are exp(.410)=1.51 

times more likely than White British students to be entered for a higher tier, even after 

controlling for SEC. 

 

Evaluating the model and the assumption of proportional odds 

Of course we should not take the above at face value without examining the adequacy of the 

model and particularly the PO assumption. Looking at the model fit (Figure 5.6.5) we can see 

a highly significant reduction in the chi-square statistics (p<.005) so the model is clearly a 

significant improvement over the baseline or intercept only model. The Nagelkerke R2 

indicates the model can account for 12.4% of the variance in tier of entry. 

 



Figure 5.6.5: Model-fit Data 

 

However the goodness-of-fit statistics (Figure 5.6.6) suggest the model does not fit the data 

well. 

 

Figure 5.6.6: Goodness of Fit for Model 

 
And the test of parallel lines (Figure 5.6.7) also rejects the null hypothesis of the assumption 

of PO.  

Figure 5.6.7: Test of Parallel Lines 

 

These statistics suggest the model does not fit the data well. I said earlier that these statistics 

can be unreliable in certain circumstances. For example the large sample size here means 

that even very small departures from the PO assumption may be found to be statistically 

significant. We will explore what to do in these circumstances in more detail later (section 5.9). 

But first it might be prudent to test whether this is due to the absence of any interaction terms 

in the model. We saw previously that there were significant interactions between ethnic group 

and SEC in their impact on attainment.  As we have seen before in earlier modules, it is 

important to test for interaction effects, particularly where these are suggested by theory or 

prior research evidence. We should include the interaction terms and will show you how to do 

so on the next page. 

 

 



5.7 Evaluating interaction effects in ordinal regression 

 

Requesting a model with interaction terms 

First ask for an ordinal regression through selecting Analyse>Regression>Ordinal as we did 

on Page 5.6. To specify interaction terms in SPSS ordinal we use the „Location‟ submenu, so 

click on the „Location‟ button. What we want to do now is specify not a „Main Effects‟ but a 

„Custom‟ model, so place a tick in the „Custom‟  button as shown in the image below.  

 

 

We now need to build our model.  The logic of the approach to testing interactions is as we 

have described earlier in Module 3 (linear regression) and Module 4 (logistic regression). We 

start by specifying a full model that includes all the main effects, plus all 2-way interactions 

plus the three-way interaction. We then run this model and if the highest order interaction 

(here the 3-way interaction between ethnic2 * Sec2 * gender) is not significant it can be 

removed. We then run the model with the main effects and all the 2-way interactions, again 

subsequently eliminating any non-significant 2-way interaction terms.  

 

To build this full model we hold down the CTRL key and click on ethnic2, gender and Sec2 in 

the ‘Factors/covariates’ box so all three variables are highlighted, then in the „Build terms‟ box 

click „main effects‟, and then drag (or  click on the arrow) to move these to the „Location 

model‟ box. Then do the same but click on „All 2-way‟ in the „build terms‟ box, and lastly again 

with „All 3-way‟ in the build terms box as shown below.  

 



 

 

 

We have decided not to bombard you with the output but running this analysis on the data 

indicated no statistically significant 3-way interaction so this term was removed. Running a 

subsequent model with all 2-way interactions revealed no significant 2-way interactions 

between ethnic2*gender or Sec2*gender but a highly significant ethnic2*Sec2 interaction. 

Rather than repeating this analysis here, we will just request the model including the main 

effects and the significant ethnic2*sec2 interaction. You can remove the ethnic*gender*sec, 

gender*sec2 and ethnic2*gender terms by clicking on them and dragging (or using the 

reverse arrow) to move them back to the Factors/covariates box, leaving just the main effects 

and the ethnic2*sec2 interaction in the Location model. This is what the final version of the 

Location submenu will look like: 

 



 

Click „Continue‟ and then OK to run the model. 

 

Interpreting the results with interactions 

 

Examining the linear part of the model (the logits) 

 

The parameter estimates are shown below (Figure 5.7.1). We can see that the interaction 

terms are all highly significant, particularly so for Indian, Pakistani and Bangladeshi students.  

 

Figure 5.7.1: Parameter Estimates for Model with Interaction Terms 

 

 

The significant interaction terms indicates the slope of the assumed linear relationship 

between SEC and entry to a higher tier varies significantly between ethnic groups. Just as we 

did when looking at interactions on Page 3.11 and Page 4.13 we can understand the 

interaction best by calculating the predicted values for each ethnic group by SEC combination 

and plotting these graphically. If we work with the linear part of the model (the logits) this will 

most clearly display the form of the interaction. 



 

Just as with linear regression, we can think of the line representing the relationship between 

SEC and the predicted logit for entry to higher tiers as having the formula: 

Y= a + b1x1 + b2x2 + b3x3  ...etc. 

 

Because the effect of gender is a constant (it does not interact significantly with either ethnic2 

or Sec2) then we only need to be concerned with three parameters: a= the intercept (the 

coefficients for ethnic group when Sec2=0); b1x1 representing the coefficient and value 

respectively for Sec2, and b2x2 represents the coefficient and values respectively for each of 

the ethnic2*Sec2 interactions. 

 

The intercepts are just the ethnic group coefficients when Sec2=0. Because White British are 

the reference group for ethnicity their logit is represented by zero and the coefficients for each 

ethnic group are contrasts against White British. These values can be read directly from the 

SPSS output and are highlighted in red on Figure 5.7.2. 

 

We then need to calculate the change in the logit for different levels of Sec2. The printed 

value of Sec2 in the SPSS output (-.311) is the unit change in logits associated with a one unit 

increase in the value of Sec2 for the reference group, i.e. White British students. So to 

calculate the predicted logits at each level of Sec2 for White British students we simply 

multiply -.311 by the respective value of Sec2. So for White British students from SEC=5 

(semi-routine homes) the predicted logit is:  0 + (-.311 * 5) = -1.55. These predicted values are 

highlighted by the blue box on Figure 5.7.2. 

 

For ethnic minority students the slope for Sec2 is moderated by the ethnic2*sec2 interaction. 

For example for Black Caribbean students from SEC=5 (semi-routine homes) the predicted 

logit is:  -1.14 + (-.311 * 5) + (.099 * 5) = -2.20. It gives exactly the same result, but is slightly 

computational easier, to calculate the unit change in logits for each unit change in SEC for 

Black Caribbean (-.311 + .099 = -.211). We can then just multiply -.211 by the respective 

values of Sec2 and do this for all levels of Sec2. 

 

We follow the same process as above for each minority ethnic group. These predicted values 

are shown in the rest of Figure 5.7.2. We have used EXCEL to calculate the predicted logits 

shown in Figure 5.7.2 and to plot the relationship graphically Figure 5.7.3. 

 



Figure 5.7.2: Predicted logits for each ethnic group and SEC combination from the 
ethnic2*sec2 interaction model 

 

 
High SEC2 Low 

Ethnic group 0 1 2 3 4 5 6 7 

White British 0.00 -0.31 -0.62 -0.93 -1.24 -1.55 -1.86 -2.17 

Mixed -0.27 -0.51 -0.75 -1.00 -1.24 -1.48 -1.72 -1.97 

Indian 0.14 -0.09 -0.31 -0.54 -0.77 -0.99 -1.22 -1.44 

Pakistani -0.66 -0.86 -1.05 -1.25 -1.45 -1.65 -1.85 -2.04 

Bangladeshi -0.79 -0.92 -1.04 -1.17 -1.30 -1.42 -1.55 -1.68 

Black Caribbean -1.14 -1.35 -1.56 -1.77 -1.98 -2.20 -2.41 -2.62 

Black African -0.61 -0.85 -1.08 -1.31 -1.55 -1.78 -2.01 -2.25 

Any Other group -0.04 -0.31 -0.58 -0.84 -1.11 -1.38 -1.64 -1.91 
                  

 
 
Figure 5.7.3: Predicted logits for each ethnic group and SEC combination from the 

ethnic2*sec2 interaction model 

 

 

Examining the ORs 

 

The above figure shows the relationship in terms of log odds (logits). What does this mean in 

terms of ORs? The OR for each ethnic group when sec2=0 (higher managerial and 



professional occupations) can be found directly by exponentiating the ethnic coefficients. For 

example the OR for Black Caribbean students is exp(-1.138)= 0.32, so for Black Caribbean 

students from homes in the highest SEC category the odds of being entered for a higher tier 

are only one third (0.32) the odds for White British students, or conversely the odds for White 

British students from the highest SEC category being entered for a higher tier are over three 

times (1/.32=3.12) the odds for Black Caribbean student being entered. 

 

What about the ethnic group ORs at other levels of SEC? Exponentiating the values in the 

body of Figure 5.7.2 will give the ORs for each SEC and ethnic combination relative to the 

overall reference group (White British students from higher managerial & professional homes). 

This is fine, but what we really want are the ORs that compare each minority group to their 

White British peers within each SEC category.  

 

The easiest way to calculate the ethnic group ORs at different values of SEC is simply to 

RECODE SEC to a new variable (Sec2) where the zero value represents the reference 

category of interest. This means the coefficients (and the associated standard errors and p 

values) for each ethnic group will give the contrast with White British students for the 

reference SEC category. This can easily be done by using the COMPUTE command to 

recode the original SEC variable. For example we used the following syntax to create the new 

variable sec2 taking one away from the value of SEC for each case.    

 COMPUTE Sec2= SEC - 1. 

We also adjusted the „Missing‟ setting in the Variable View such that „-1‟ (and not 0) was the 

missing value. This gives Sec2 the values we have used in the above analysis where higher 

managerial and professional homes is the reference category (0). You can see the recoded 

values for sec2 in the column labelled „Sec-1‟ of Figure 5.7.4 below. 

 

Figure 5.7.4: Varying the reference category for SEC using the COMPUTE command 

Values of Sec2  after the COMPUTE command

SEC label Sec Sec-1 Sec-2 Sec-3 Sec-4 Sec-5 Sec-6 Sec-7 Sec-8

Higher managerial & prof. 1 0 -1 -2 -3 -4 -5 -6 -7

Lower managerial & prof. 2 1 0 -1 -2 -3 -4 -5 -6

Intermediate 3 2 1 0 -1 -2 -3 -4 -5

Small employers/SE 4 3 2 1 0 -1 -2 -3 -4

Lower supervisory & tech. 5 4 3 2 1 0 -1 -2 -3

Semi-routine 6 5 4 3 2 1 0 -1 -2

Routine 7 6 5 4 3 2 1 0 -1

Long term unemployed 8 7 6 5 4 3 2 1 0  

Suppose we want long term unemployed to be the reference category for SEC. We can do 

this by subtracting 8 from every value of SEC to create a temporary SEC variable (SECtemp). 

This is the SPSS syntax:  



 COMPUTE SECtemp= SEC - 8. 

This gives SECtemp the values in the last column of Figure 5.7.4 labelled „Sec-8‟. Now long 

term unemployed are the reference (0) category.  If you run the regression again with this new 

coding of SEC (remembering to change the „Missing‟ setting to „-9‟ and the „measure‟ column 

to ordinal) you will get the regression output shown below (Figure 5.7.5). 

 

Figure 5.7.5: Parameter estimates with long term unemployed as the reference group 

 

 

Now the coefficients (and standard errors and p values) for each ethnic group represent the 

contrasts when the SEC reference category is long term unemployed. As you would expect, 

these are substantially different for some ethnic groups from the ORs among students from 

higher managerial & professional homes. For example among the lowest SEC homes 

Bangladeshi pupils are significantly more likely than White British pupils to be entered for 

higher tiers (OR= exp(.498)= 1.65, p<.005). Black Caribbean students are still less likely than 

White British to be entered for a higher tier (OR = exp(-.444) = 0.64, p<.02), but this is a 

smaller degree of under-representation than we saw among students from the highest SEC 

homes where the OR was 0.32. 



 

Evaluating model fit 

The interactions of ethnic2*sec2 are highly statistically significant, and, as we can see from 

Figure 5.7.6, including them has increased the Nagelkerke R2 from 12.4% to 12.7%. However 

the goodness-of-fit test still indicates a less than adequate fit, and the test of parallel lines still 

formally rejects the proportional odds assumption. We therefore need to consider further 

refinements to our model. 

 

Figure 5.7.6: Statistics for Evaluating the Model 

 



5.8 Including a control for prior attainment 

 

A key variable so far missing from our model is information on students‟ prior attainment. This 

is important since we would expect that students with lower attainment would be entered for 

the lower tiers and those with higher attainment would be entered for higher tiers. Fortunately 

we have a measure of students‟ prior attainment in the form of their average score in national 

tests at age 11, so we can add this to the model. As we said earlier, to aid the interpretation of 

a continuous explanatory variable we need to make the zero value meaningful. For this 

reason the (by now quite familiar!) standardised measure of attainment at age 11 (ks2stand) 

is most useful because zero indicates the mean age 11 score, so our model coefficients will 

be calculated for students of average prior attainment. We also know the SD for ks2stand is 

10, which is a nice round number should we want to calculate the coefficient for students 1 SD 

below or 1 SD above the mean. So now run the previous model (with Ethnic2, gender and 

sec2) but also add ks2stand. This should be added to the covariates box because it is a 

continuous explanatory variable. 

 

Goodness of fit and Pseudo-R2 

Let‟s take a look at Figure 5.8.1. The goodness of fit test is now no longer significant, which 

suggests the model fits the data well. However as we said earlier we should probably not pay 

too much attention to this because with a continuous predictor (age 11 standard score) there 

are many empty cells. In fact whereas before we had 20 (3.9%) empty cells now SPSS issues 

a warning message telling us we have 7086 (62.9%) empty cells. This warning does not mean 

we cannot proceed with the analysis, but it does mean we should be wary of the accuracy of 

the goodness-of-fit test. 

 

Figure 5.8.1: Statistics for Evaluating the Prior Attainment Model 

 
We can inspect the Pseudo- R2 to get an alternative indication of the predictive power of the 

model. Our Pseudo-R2 value has increased hugely (from 12.7% to 69.9%) so the model is 

much better able to predict the outcome for individual cases. This improvement in R2 is in line 

with that we have seen previously when we add prior attainment to our prediction of 

achievement (see Module 3.13). 

 



Parameter estimates table 

Looking at the parameter estimates table below (Figure 5.8.2), none of the terms for the 

interaction between ethnic2*sec2 remain statistically significant in our new model, so the 

interaction terms can be dropped to simplify the model. 

 

Figure 5.8.2: Parameter Estimates for Prior Attainment Model with interaction term 

 

 
Below is the parameter estimates table from a model run after we have dropped the 

ethnic2*sec2 interaction terms (Figure 5.8.3). 

 



Figure 5.8.3: Parameter estimates after dropping the ethnic2*sec2 interactions. 

 

 

Clearly prior attainment has accounted for a large proportion of the variance in tier entry. A 

unit change in KS2 standard score increase the odds of entry to the higher tier by exp(.291) = 

1.34. The SD of ks2stand is 10 and Exp(.291*10)= 18.4, so a student scoring 1 SD above the 

mean score at age 11 is 18 times more likely to be entered for a higher tier than a student with 

the average (mean) age 11 score. Equally a student with an age 11 score 1 SD below the 

mean is 18 times less likely to be entered for a higher tier than a student with the mean age 

11 score. However there are still significant association with ethnic group, SEC and gender.  

 

Boys (gender=0) are significantly more likely to be entered for the higher tier, even after prior 

attainment, SEC and ethnicity are controlled: Exp(.108)=1.11, p<.007. Students from lower 

SEC are still less likely to be entered for the higher tiers, even after control for prior 

attainment, ethnic group and gender: Exp(-.115)=0.89, p<.005. In relation to ethnic group 

there are mixed results. Students from Indian (ethnic2= 2), Pakistani (ethnic2= 3), 

Bangladeshi (ethnic2= 4), Black African (ethnic2= 6) and Any other ethnic group (ethnic2= 7) 

are significantly more likely to be entered to higher tiers than comparable White British 

students. For example Pakistani students are Exp(.617)=1.85 times as likely as similar White 

British students to be entered to higher tiers. However Black Caribbean (ethnic2= 5) students 

are distinctive as the only ethnic group to be less likely to be entered to higher tiers than White 

British students (Exp(-.410)=0.66, p<.005). Even after control for prior attainment, SEC and 

gender, the odds of Black Caribbean students being entered for the higher tiers are about 



two-thirds of the odds for White British students. Put the other way round the odds for White 

British students of being entered are (1/.66)=1.5 times or 50% greater than the odds for Black 

Caribbean students of the same prior attainment, SEC and gender.  

  
Test of parallel lines 

However the test of parallel lines (Figure 5.8.4) still indicates that the PO assumption may not 

hold for the data, with the „p<.000’ indicating rejection of the null hypothesis of PO. 

 

Figure 5.8.4: Test of Parallel Lines after dropping the ethnic2*sec2 interactions. 

 

This indicates that there may be some explanatory variables for which the ORs are not stable 

across different cumulative thresholds in relation to tier of entry. We therefore need to delve 

into this a bit deeper. 

 



5.9 What to do if the assumption of proportional odds is not met? 

 

As we said earlier (on Page 5.4 while „Examining the SPSS output‟) the test of the PO 

assumption has been described as “anti-conservative, that is it nearly always results in 

rejection of the proportional odds assumption, particularly when the number of explanatory 

variables is large (Brant, 1990), the sample size is large (Allison, 1999; Clogg and Shihadeh, 

1994) or there is a continuous explanatory variable in the model (Allison, 1999).” (O‟Connell, 

2006, p29). It is important to examine the data using a set of separate logistic regression 

equations to explicitly see how the ORs for our explanatory variables vary at the different 

thresholds.  

 

In Figure 5.9.1 below we have dichotomised the ordinal tier variable at three cut-off points: 

top tier, upper tier or above, and lower tier or above (there is no need for a model for bottom 

tier or above since this includes all students). You can find these three variables in the dataset 

called TierTop, TierUpper and TierLower respectively. We have then completed three 

separate binary logistic regression models (see Module 4!), one for each dichotomised 

response.  

 
Figure 5.9.1: Results of three binary logistic regressions for entry to top tier, upper 

tier or above and lower tier or above 

 

Notes: *=p<.05, **=p<.01; ***=p<.001. 

 



We can now examine the ORs for each explanatory variable across the separate splits in the 

data to determine how consistent they are. As an additional check on the proportional odds 

assumption, the test of parallel lines was completed for each explanatory variable separately, 

that is separate ordinal models were completed each containing only a single explanatory 

variable. For ethnic group this was done using the dummy variables e1 (mixed heritage) to e7 

(Any Other group), entering each in a separate model. Because of the large sample size a 

p<.01 level was used to guide decisions regarding non-proportionality. The p values are 

presented in the final column of Figure 5.9.1. 

 

The PO assumption appears to be rejected for both Sec2 and KS2stand using the separate 

tests of parallel lines (p<.000), but as explained earlier these are continuous variables and are 

likely to result in a high proportion of empty cells. Looking at the separate ORs across the 

three splits the difference in ORs appears negligible (.87 to .91 for Sec2, and 1.31 to 1.36 for 

ks2stand), so a common OR for each of these variables is a very plausible assumption.   

 

In relation to ethnic group, the PO assumption is upheld (p>.01) for all ethnic groups except 

for Black Caribbean. Looking across the separate ORs this seems plausible. While the ORs 

for Indian and Black African students are particularly high for the lower tier or above relative to 

the other two splits, the coefficients are all in the same direction. For Black Caribbean 

students the p value (p<.008) is just below our selected critical level p<.01. The cumulative 

OR of 0.66 does slightly underestimate the under-representation of Black Caribbean students 

in the top tier (0.56), and slightly overestimate their under-representation in the lower tier or 

above (0.74). However the coefficient for Black Caribbean students is broadly consistent in 

direction and magnitude across all the splits in the data. Black Caribbean students are the 

only ethnic group that is under-represented relative to White British students, the result is 

statistically significant at all splits, with broadly similar ORs which average close to the ordinal 

OR  (.74+.61+.56) / 3 = 0.64. The OR for Black Caribbean students from the ordinal PO model 

therefore represents a reasonable summary of the overall pattern for Black Caribbean 

students.  Importantly this under-representation persists after we control for prior attainment 

and for social class and so cannot be accounted for by these factors.  

 

The variable most out of line with the PO assumption is gender. The PO assumption is 

strongly rejected for this variable (p<.000). In the ordinal PO model the OR for boys was 1.11, 

which is the same as an OR for girls of (1/1.11) = 0.90. This suggests girls are under-

represented relative to boys in entry to higher tiers. However this over-simplifies the data 

which shows girls are significantly under-represented in the top tier (0.74) but not significantly 

so for upper or above (.91) or for lower or above (1.03). This finding was obscured in the 



single cumulative OR for gender and summarising this relationship in a single OR misses this 

observation. Thus gender may well be the major factor underlying the overall rejection of the 

PO assumption.  

 

There are partial proportional odds (PPO) models that allow the assumption of PO to be 

relaxed for one or a small subset of explanatory variables, but retained for the majority of 

explanatory variables. In the present case it might be apposite to run such a model, relaxing 

the PO assumption for the gender variable. However this requires restructuring of the dataset 

which is beyond the scope of this web resource. The reader is referred to O‟Connell (2006) 

p48-54 for further detail on PPO models. For the current analysis, inspection of the separate 

ORs for a series of binary logistic regressions suggests it is reasonable to conclude the 

ordinal PO model is a fair summary of the patterns in the data in relation to tier of entry, but 

noting that the under-representation of girls is specific to the top tier and should not be 

assumed to generalise across all cumulative splits in the data. 

 



5.10 Reporting the results of ordinal regression 

 

Perhaps the most noteworthy outcome from the analysis of the example completed above is 

the finding that Black Caribbean students are under-represented in entry to the higher 

mathematics test tiers relative to White British students in the ratio 0.66:1, i.e. the odds of 

being entered to the higher tiers for Black Caribbean students are about two-thirds the odds 

for White British students. As we saw in Module 4 (page 4.8) we can express this in % terms 

by subtracting 1 from the OR and multiplying by 100: (0.66-1)*100 = a 34% decrease in the 

odds for Black Caribbean students. Put the other way round the odds for White British 

students of being entered for higher tiers are (1/.66)=1.5 times or 50% greater than the odds 

for Black Caribbean students. Importantly our models show that this finding cannot be 

explained in terms of the prior attainment of the students or by differences in social class 

composition. If you are interested to see a full ordinal analysis of the tiering data and how it is 

reported then you can find this in the following journal article:  

 

 Strand, S. (2011). The White British-Black Caribbean achievement gap: Tests, tiers and 

teacher expectations. British Educational Research Journal, iFirst at  Link to journal article 

 

This shows how an ordinal model was built hierarchically over a series of steps, looking first at 

prior attainment then progressively adding further explanatory variables. Note that the results 

from an analysis of the summary LSYPE dataset used here will not agree precisely with the 

analyses presented in the paper because slightly different variables are used, and the data in 

the paper have been weighted to account for selection and non-response issues and for 

clustering within schools, but the overall pattern of findings will be similar. The paper also 

discusses in depth the interpretation of the model findings, and what these mean in relation to 

policy and practice. Statistical models are only useful if the results and their implications can 

be communicated clearly to the intended audiences. 

 

http://www.informaworld.com/openurl?genre=article&issn=0141-1926&issue=preprint&spage=1&doi=10.1080/01411926.2010.526702&date=2011&atitle=The%20White%20British–Black%20Caribbean%20achievement%20gap:%20tests,%20tiers%20and%20teacher%20expectations&aulast=Strand&aufirst=Steve


5.11 Conclusions 

 

In this module we have looked at regression models that can be applied when our outcome is 

represented by an ordinal variable. Several authors (e.g., Ananth & Kleinbaum, 1997) argue 

that ordinal models are under-used in social sciences, with researchers often reducing ordinal 

data to a series of binary logistic regressions. In contrast ordinal regression models take 

advantage of the ordinality in the outcome by summarising the relationships between 

explanatory variables and the outcome in a single parsimonious model. However the most 

popular approach to ordinal regression - the proportional odds (PO) model - makes an 

substantial simplifying assumption that the ORs associated with each explanatory variable are 

the same over the cumulative splits in the outcome. This assumption has to be tested if 

ordinal models are to be applied appropriately. We have noted that the statistical test of the 

PO assumption is over-conservative and the PO assumption is frequently rejected particularly 

when the number of explanatory variables is large (Brant, 1990), the sample size is large 

(Allison, 1999; Clogg & Shihadeh, 1994) or there is a continuous explanatory variable in the 

model (Allison, 1999). Therefore we have seen how to evaluate the ordinal PO model by 

completing a series of binary logistic regressions at each of the cumulative splits in the data, 

and how this can allow us to directly evaluate the consistency in ORs across an ordinal 

outcome. Where the PO assumption is justified ordinal regression models can be a powerful 

means of summarising relationships that utilises all the information present in the ordinal 

outcome. As you can tell, there is some debate by statisticians about when to use Ordinal 

Regression. A sure sign that you have reached the end of a tricky Module... Well done! 



5.12 Other types of categorical models 

 

Other ordinal models 

The PO model used in SPSS is by far the most common form of ordinal regression. However 

there are other approaches to ordinal regression, for example the continuation ratio model 

and the adjacent categories model. Both involve restructuring your dataset, sometimes using 

link functions other than the logit and sometimes statistical packages other than SPSS. They 

are therefore not core to our coverage in this module. The interested reader can find excellent 

treatment of such models in O‟Connell (2006).   

 

Log-linear analysis  

You might also come across a range of models called log-linear models as you read statistics 

texts (for light reading on a Sunday morning in bed perhaps). This class of models is used 

where we are interested in the relationships between a set of variables but have no clear 

outcome or dependent variable. However where we have a variable that clearly represents an 

outcome (such as a test score, NC level, tier of entry etc.) it makes sense to analyse this in a 

regression framework asking how various explanatory variables impact on the outcome 

variable. In such cases a linear, logistic or ordinal regression model is more appropriate than 

log-linear analysis. For an introduction to log-linear analysis including a guide to 

implementation in SPSS we recommend Acton & Miller (2009) Chapter 11. 

 

Multinomial logistic regression 

Another type of model is multinomial logistic regression. In such models there is a clear 

outcome variable, but there is usually no ordinality in the outcome. An example in education 

might be in identifying the characteristics of students who select different kinds of secondary 

schools (e.g. Independent schools, Church schools or Local Authority schools). In this case 

there are therefore multiple outcomes but no ordinality in the outcome. Some authors 

recommend undertaking multinomial regression even with an ordinal outcome if the PO 

assumption is not met (e.g. Norusis, 2005). However we can see no advantage to this, indeed 

if there is ordinality in your outcome and the PO assumption is not supported it is definitely 

better to complete a series of logistic regressions on cumulative splits in the outcome as 

demonstrated in this module.  For good coverage on multinomial logistic regression we 

recommend Field (2009) Chapter 8. 
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Module 5 Exercise 

 

We have seen that Black Caribbean students are systematically under-represented relative to 

White British students in entry to higher tiers of the age 14 national mathematics test. This 

difference remains significant even after controlling for prior attainment, socio-economic class 

of the home and gender. However are there other variables in the LSYPE dataset that may 

account for their under-representation in entry to the higher tiers? 

Use the LSYPE 15,000 dataset to work through each of the following questions. Answer them 

in full sentences with supporting tables or graphs where appropriate as this will help when you 

to better understand how you may apply these techniques to your own research. The answers 

are on the next page. 

Note: The variable names as they appear in the SPSS dataset are listed in italics. We have 
also included some hints in italics. 

 

1. Explore the relationship between ethnic group (ethnic2) and a) having an identified 

Special Educational Need (sen), b) whether the student reported truanting at any time 

during year 9 (truancy) and c) whether the student has been excluded from school at 

any point during Years 7 and 9 (exclude). What are the differences between Black 

Caribbean and White British students on these variables? Are any differences 

statistically significant? 

Use crosstabs and chi-square analyses.  

 

2. Complete an ordinal regression similar to the one we have used as an example 

throughout this module but entering the variables SEN, truancy and exclude along with 

the factors (ethnic2, gender and sec2) and the covariate (ks2stand). Are SEN, truancy 

and exclude related to the likelihood of a student being entered to a higher 

mathematics tier? What are the odds ratios for these three new variables? 

Use the Parameter Estimates Table and calculate the odds ratios. 

 

3. Does the addition of these new variables change the ethnic Odds Ratios substantially 

compared to Figure 5.8.3 (Page 5.3)? Are Black Caribbean students still under-

represented relative to White British students in entry to the higher maths tiers? 

Compare the two Parameter Estimates Tables. 

 

4. Is the assumption of „Proportional Odds‟ met for this final version of the model? 

Request a 'Test of Parallel Lines' from the 'Output' submenu when running the 

regression analysis. 



Answers  

 

1. Explore the relationship between ethnic group (ethnic2) and a) having an identified 

Special Educational Need (sen), b) whether the student reported truanting at any time 

during year 9 (truancy) and c) whether the student has been excluded from school at 

any point during Years 7 and 9 (exclude). What are the differences between Black 

Caribbean and White British students on these variables? Are any differences 

statistically significant? 

 

The following cross-tabulations were created using the Analyze>Descriptive 

Statistics>Crosstabs option on SPSS. We have also included the row percentages and 

Pearson’s Chi-square for each crosstab (the results of which are reported above each table). 

If you are unsure about how to do this we describe the process on Page 2.2. Note that we 

have re-sized each table and added the numeric codes for each category. This is to make 

them easier to interpret here so don‟t worry if your output looks slightly different (though the 

actual figures should be the same!). 

 

Ethnicity by SEN crosstab 

Chi-square = 48.03, df = 7, p <.0005. 

 
 



Ethnicity by Truancy crosstab 
Chi-square = 66.56, df = 7, p <.0005. 

 
 

Ethnicity by Exclusion crosstab 

Chi-square = 121.85, df = 7, p <.0005. 

 

The results indicate that there are statistically significant associations between ethnicity and 

each of SEN, truancy and exclusion – in short that there are significant differences between 

ethnic groups with regard to these three variables. Let us explore the specific comparison 



between White British and Black Caribbean students more closely. We can see that Black 

Caribbean students are more likely to be identified as having special educational needs 

(12.5%) than White British students (7.7%). They are also more likely to report truanting 

(20.3% of students) compared to White British students (15.8%). Finally they are nearly twice 

as likely to be excluded as White British students with 20% having been excluded compared 

to only 10.4% of White British students. There seem to be grounds to include all three of these 

explanatory variables in any model which attempts to account for ethnic differences in entry to 

different test tiers.



2.  Complete an ordinal regression similar to the one we have used as an example 

throughout this module but entering the variables SEN, truancy and exclude along with 

the factors (ethnic2, gender and sec2) and the covariate (ks2stand). Are SEN, truancy 

and exclude related to the likelihood of a student being entered to a higher 

mathematics tier? What are the odds ratios for these three new variables? 

An Ordinal Regression was completed using the model as shown in Figure 5.8.3 but with the 

addition of the SEN, truant and exclusion variable. The key output from the parameter 

encoding table is shown below: 

Parameter Estimates Table 

 

 
Let‟s look at the coefficients for our three new explanatory variables (sen, truancy and 

exclude). To make sense of these logits we will need to take the exponentials to turn them 

into ORs. This is where EXCEL or a graphics calculator comes in handy! So: 

 

SEN   Exp (.603) = 1.83 

Exclude  Exp (.604) = 1.83 

Truancy  Exp (.273) = 1.31 

 

In SPSS ordinal regression the reference category for nominal explanatory variables is 

indicated by the value 1, and for all three variable the value „1‟ indicates „yes‟. The fact that 

the ORs are greater than 1 tells us that students who do not have SEN, who do not report 

truanting and who have never been excluded from school are more likely to be entered for the 

higher tiers. Those who do not have an identified SEN are nearly twice (1.83 times) as likely 



to be entered for a higher tier as those with SEN. Similarly the odds of students who have 

never been excluded from school being entered to a higher tier are 1.83 higher than the odds 

for students who have been excluded. Finally there is a less pronounced but still highly 

significant association with truancy: students who did not report truanting were 1.31 times 

more likely to be entered for a higher tier than those who did report truanting. Remember that 

these associations are significant even after differences in prior attainment, ethnicity, gender 

and socio-economic class of the home are accounted for.  

 



3. Does the addition of these new variables change the ethnic Odds Ratios 

substantially compared to Figure 5.8.3 (Page 5.3)? Are Black Caribbean students still 

under-represented relative to White British students in entry to the higher maths tiers? 

 

In the original model - before we entered SEN, exclude and truancy (see Figure 5.8.3) - the 

logit for Black Caribbean students was -.410, and the exponential of this indicates an odds 

ratio of 0.66. In this original model then Black Caribbean students were roughly two-thirds as 

likely as White British students to be entered for the highest tier.  

 

In our new model (see table below) we can see that the logit for Black Caribbean students 

(ethnic2=5) is -.348 which is an odds ratio of Exp (-.189) = 0.71. Thus the under-

representation of Black Caribbean students is very slightly reduced, but not by much. The 

statistical significance of the coefficient for Black Caribbean is still very high (p<.0005). So 

even after accounting for the higher likelihood of Black Caribbean students to have SEN, to 

truant or to be excluded from school, Black Caribbean students are still roughly two-thirds as 

likely as comparable White British students to be entered for a higher tier. 

 

Parameter Estimates 

 



4. Is the assumption of ‘Proportional Odds’ met for this final model? 

 

It is worth noting that the test of parallel lines for the model is significant, so strictly speaking 

the proportional odds assumption is rejected, although we should remember the anti-

conservative nature of this test. 

Test of Parallel Lines 

 

 
For completeness you might want to undertake separate binary logistic regressions for 

TierTop, TierUpper and TierLower as was demonstrated on Page 5.9, this time also including 

the three new variables in the model. The results for the Black Caribbean variable are 

reported below. 

 

Coefficient for Black Caribbean in three separate binary logistic regressions for a 

model including SEN, truancy and school exclusion as well as prior attainment, 

ethnicity, gender and SEC 

Explanatory 
Variable 

  lower tier 
or above 

Upper tier 
or above 

Top tier Average  
(a) 

Ordinal 
model 

Black Caribbean logit -0.179 -0.518*** -0.552* - -0.35 

 OR   0.84 0.60  0.58 0.67 0.71 

Notes. (a). The average value across the three logistic models. *=p<.05, **=p<.005. 

  

You will see that with the inclusion of SEN, truancy and exclude the under-representation of 

Black Caribbean students in entry to the lower tier or above compared to the bottom tier (0.84) 

is no longer statistically significant. However the under-representation of Black Caribbean 

students in entry to the upper tier and above (0.60), and to the top tier (0.58), are large and 

statistically significant. As a result the cumulative OR from the ordinal model (0.71) is a 

somewhat less robust summary than was previously the case (see discussion on Page 5.9). 

In this example it would probably be wise to report both the separate logistic as well as the 

ordinal regression results, so that readers are aware of the variation in the OR across the 

separate thresholds. 

 

 


