

Technical guide to producing online
questionnaires: Print version

This module was written by Rob Shaw except where stated in section headings or case studies.

For information on copyright and how to cite this module, please refer to the following web
pages:

• Copyright statement: http://www.geog.le.ac.uk/orm/site/copyright.htm
• Citation policy: http://www.geog.le.ac.uk/orm/site/citation.htm

Contents

1. Aims and learning outcomes ..2
2. Introduction to online questionnaire production: Overview and options3
3. Choosing software for online questionnaire production14
4. Using software for online questionnaire production ..22
5. Introduction to HTML 1 ...31
6. Introduction to HTML 2 ...41
7. Introduction to CSS ..56
8. Web forms ..69
9. Introduction to JavaScript ..79
10. Form validation ...89
11. Key design issues ..134
12. Gathering information about participants ..145
13. Server-side processing ...173
14. Frequently-asked questions ...186
15. Glossary ...192
16. Resources ..200

Aims and learning outcomes

Aims
1. To provide background information on the range of options available for the

production of online questionnaires and the key benefits and drawbacks of each;
2. To provide an introduction to the range of software and services available to

assist in the production and implementation of online questionnaires;
3. To provide an introduction to HTML and CSS;
4. To introduce web forms and explore the technology behind the effective design

of online questionnaires;
5. To introduce and allow practice in the use of JavaScript for basic form validation,

and the gathering and preservation of user information;
6. To provide basic guidelines for the use of server-side technologies for the

collection and processing of data;
7. To discuss relevant issues when choosing off-the-shelf software for the creation

and administration of online questionnaires, and to provide general guidelines
on how such software is used;

8. To describe key terms, definitions and terminology in relation to the technical
aspects of online questionnaires;

9. To provide links to additional resources, frequently asked questions and print
versions.

Learning outcomes
At the end of this module, you will be able to:

1. Identify appropriate technical options for the implementation of online
questionnaires according to the context of research;

2. Identify key issues to bear in mind when choosing off-the-shelf software or
services for online questionnaires;

3. Identify the technical features required for your online questionnaire, and select
suitable software and/or services to provide for these requirements;

4. Use a range of technologies in the creation of online questionnaires, such as
HTML, CSS and JavaScript;

5. Create a web form, test it for consistency, and incorporate effective navigation
and a progress bar;

6. Add basic validation and a means of collecting and preserving information about
the user;

7. Understand how different server-side processing technologies can be used to
collect and process the data from the form and how to go about using these
technologies;

8. Use the correct terminology when communicating about online questionnaires;
9. Collect information about sources of help when developing online questionnaires

in different contexts.

 2

Introduction to online questionnaire production:
Overview and options

Introduction
This page aims to offer an overview of the process of creating an online questionnaire and to
provide an introduction to some of the key issues that must be considered when deciding on
an option for implementing a questionnaire.

It will also focus on the different options available, and provide examples of the technical
choices a number of researchers made to facilitate their studies, and their rationales for doing
so.

Finally, it will outline some of the key skills required to successfully employ each of the
different methods.

Overview of the process of creating an online
questionnaire
A typical procedure for implementing an online questionnaire is as follows:

1. Create an HTML document with questions and form elements to collect
responses.

2. Ensure that the document is correctly designed and formatted for consistency
and accessibility.

3. Add server-side scripts to allow the information to be collected through emailing
the results in a useable format or automatically populating a database or text
file with them.

4. Add server and/or client side scripting to minimise measurement error and
improving the quality of data collection. This may involve:

o Incorporating validation routines to check that the information
submitted is in a suitable format and that no questions or
selections have been accidentally missed.

o Establishing access control to (where needed) increase the
chances that only those who are part of the sampling frame take
part in the survey.

o Including routines to obtain information such as whether or not
the respondent's machine has been used to submit the
information previously, or how long it took to complete the form.

o Adding a facility to thank the respondent for their participation
and assure them that their submission has been successful.

5. Add server and/or client side scripting to improve the respondent's experience
of completing the questionnaire and thus to reduce non-response. This may
involve:

o Preserving data entered so that it is not necessary to restart
either the survey or a section of the survey if the respondent
makes an error or is interrupted.

o Adding effective skip mechanisms or tailoring subsequent
questions in the survey according to particular responses given.

o Providing a progress bar or similar mechanism to indicate roughly
how far through the survey a respondent is.

6. Upload the document to a server to make it available online.

 3

7. Carry out the necessary distribution activities by, for example, emailing
members of a sample list and sending follow-up emails according to responses.

A researcher who wishes to carry out each of these stages independently is likely to need a
wide range of web design and web-programming skills to do this effectively. Specialist
software or institutional systems are also frequently used to automate or simplify the process.

Options for creating online questionnaires
There are three main options available to researchers who wish to implement an online
questionnaire. They can either take advantage of institutional systems that may be
available, use an 'off-the shelf' solutions to host and/or produce and manage the
questionnaire, or use and entirely self-produced questionnaire.

The choices made are likely to be influenced by issues such as the following:

The intended size and scope of the study

• The number of likely respondents;

• The length of time the questionnaire will need to be online for;

• Whether there is a need for more than one questionnaire to be running
concurrently;

• Whether there is a need to link data from particular respondents over time;

• Whether the plan is to use the questionnaire in tandem with paper-based or
other types of survey;

• If so, whether the facility is required to enter data from paper-based
questionnaires into the same database as the online ones, or to use machine-
readable paper questionnaires.

The level of resources and technical support available

• Whether a budget is available;

• Whether the researcher is working in an institution which provides technical
support or tools for creating online questionnaires;

• Whether there is easy access to a server on which to house web-pages and
scripts;

• Whether adequate administrative permissions are available to, for example,
create and access a database on the server.

The technological requirements of the questionnaire

• Whether a simple replacement for a paper-based questionnaire is required, or
whether there is a need for particular features such as the option to require a
response to particular questions, the incorporation of audio and video materials,
randomisation of questions, or the inclusion of branching or skip patterns

The distribution requirements

• The extent to which the researcher plans to control access to the questionnaire;

• Whether a particular sample group will be targeted;

• Whether a list of email addresses is available to enable contact with the sample;

 4

• Whether the technological facilities are required to manage the scale of email
correspondence by, for example, checking for submission and sending follow-up
emails to particular groups.

Other requirements

• Whether particularly personal or sensitive information is to be collected that will
need to be kept on a secure server;

• Whether there is a need to securely share access to the data with others;

• Whether there are particular style and layout needs;

• Whether there is a need for particular types of analysis;

• Whether there are any relevant institutional constraints such as the need for the
questionnaire to be housed under the URL of the institution or for the
questionnaire to meet institutional style guidelines.

The researcher's technical experience

• The level of experience of internet-mediated research and web design expertise;

• Whether the questionnaire has to be developed to a tight timescale, and the
amount of time available to the researcher to develop skills such as the
following:

o HTML and CSS to produce and format pages;
o Basic programming skills to allow freely-available scripts to be

adapted and used;
o More advanced programming skills to allow you to create your

own scripts to meet your particular needs.

Institutional systems
For researchers working within an institution such as a university, a government department,
an NHS trust, or a charitable organisation, technical support may be available which the
researcher may be able to use to implement the questionnaire. In some, cases, support may
extend to the bespoke conversion of a paper-based questionnaire to a web version.

Examples

1. The Association of American Geographers 'Internationalizing
Geography in Higher Education' study

Michael Solem (Educational Affairs Director)

How did you implement the questionnaire?

The development process was relatively straightforward and the questionnaire was
programmed by one of our technical staff.

Did you experience any problems at all?

We did experience some database issues during implementation (sometimes buttons didn't
submit information properly), but nothing that couldn't be resolved fairly quickly.

Were there any issues around response rates?

We mailed a printed version of the questionnaire to everyone who didn't respond to the two
online requests, which increased our response rate significantly. My experience has been that
printed surveys are needed to motivate large numbers of non respondents to participate, who
otherwise would ignore the Web survey.

 5

Waverly Ray (Research Assistant)

What was the context of the research?

The research investigated factors that influence geography faculty members’ participation in
activities that serve to internationalize college and university campuses, including international
collaborative teaching and research.

Why did you choose to carry out the study using an online questionnaire in tandem
with a paper-based version rather than a paper-based version or an online version
only?

To lower data collection costs, an online instrument was developed. The response rate from
the online questionnaire was not as high as anticipated, so paper-based versions of the
instrument were sent to online survey non-respondents.

Was this decision made before or after the development of the questionnaire?

The online questionnaire was developed first, followed by the paper-version of the survey.
From the beginning of data collection, the paper-based version of the survey was made
available online for respondents who for personal preference or accessibility reasons did not
want to complete the online version.

Why did you choose to have the questionnaire produced and hosted in-house?

Staff and resources were available to produce and host the questionnaire in-house.

Did you consider any other options for implementing the questionnaire (e.g. off-the
shelf software and/or hosting solutions?) If so, why were they rejected?

To my knowledge, no other options for implementing the questionnaire were considered.

How involved were you in the technical implementation?

I was not involved in the technical implementation, other than as a trouble-shooter for the
beta version of the online survey.

What did you actually have to do to get the questionnaire online (e.g. hand over a
paper version / liaise over design and development / specify technical features
required such as access control and format of resulting data)?

I provided the programmers with a paper version of the survey and the programmers took
care of the design and development of the questionnaire. I did not provide the programmers
with format requirements for the resulting data. As a result, I assigned numerical codes to the
data prior to analysis. This step could have been eliminated if I had provided the programmers
with format requirements.

Would you recommend your methods of implementing the questionnaire to other
researchers? What were the advantages and disadvantages?

I would recommend my methods to other researchers, although I had the benefit of a staff of
programmers that were responsible for the technical development of the online questionnaire
which made an online questionnaire viable for my research. There were many advantages of
an online questionnaire, including (a) the ease of contacting survey participants in far away
places; (b) the low cost of using online methods versus paper/mail-based methods; (c) time
for data-entry was lessened; and (d) errors resulting from data-entry were lessened, as well.
The main disadvantage is that the anticipated response rate was higher than the actual
response rate. So it was important that we had the resources to mail paper-versions of the
questionnaire to survey non-respondents.

What advice would you give to people in working with technical support staff to get
a questionnaire implemented?

 6

In working with technical support staff, I would suggest that other questionnaires are reviewed
so that there is a clear understanding of what format would best suit the aims of the research.
Then, the finalized questionnaire items, the array of possible responses, and numerical codes
for the resulting data should be provided to the technical support staff. Creating beta versions
of the survey is important, so that the survey can undergo revisions.

Were there any issues that emerged through the process that you hadn't expected?

Technical issues arose that the support staff resolved without my involvement. The expected
response rates were lower than the anticipated response rates, which resulted in delaying data
analysis until paper-based versions of the questionnaire could be received from survey non-
respondents.

What experience of web page production had you had prior to setting up these
pages?

I had very little web page production prior to participating in this research.

Did you have to learn any new technical skills?

No, I did not have to learn any new technical skills.

2. Nicky Shaw (Lecturer in Operations Management, Leeds University
Business School)

What was the context of the research?

We were a team of non-technical academics from social science and psychology disciplines.
None had experience of setting up online questionnaires, though all were proficient in
questionnaire design. The survey was of Leeds University academic staff (all grades) regarding
work-life balance. The questionnaire comprised four sections (three research areas plus a
demographic) and was quite long.

Why did you decide to use an online questionnaire?

Really, our driving force was cost (so the online bit was a relatively cheap option saving on
photocopying and return postage) and ease of data entry. We were looking to have the
responses migratable to a format compatible with SPSS 'by magic'!! Which worked! The
questionnaire was in html and dropped all responses into a comma delineated format, which
could be opened in Excel and copied across to SPSS.

When did you make the decision?

Actually, (as academics) we were more concerned with the questionnaire itself - which took
around 1 year to develop - and the issues around making it available online were addressed
proportionately quite late on.

Why did you use the university to host the questionnaire (as opposed to a
commercial hosting service)?

Never occurred to us to pay outside people!! We had obtained a little funding, which was just
enough to pay an internal computer guy within one of our departments plus incentives for
recipients...

Were there many issues that emerged through the process that you hadn't
expected?

All the points below came about as a result of conversation with other colleagues and the
technical staff member involved in setting up the website. None were issues we had
consciously considered prior to embarking upon an online questionnaire

 7

• Password protecting the website, to prevent people completing the
questionnaire from some other 'sample population'.

• We knew we wanted respondents to view the three research sections in a
random order (to prevent fatigue on one particular section) and this was done
automatically as people accessed the questionnaire

• We indicated the rough time duration for each section and colour coded the
sections for clarity.

• To prevent people missing questions by mistake, a check was performed on
missing answers for each section and the respondent informed of any omissions
(highlighted in red). If they still wished to skip the question, the submit button
would take them to the next page the second time around.

• Logic pathways had to be very clear for programming purposes (e.g. If
answering X to question Y, go to section Z etc).

• A lot of attention had to be paid to the coding, both in SPSS and Excel, as well
as the main data file and a few dry runs performed to make sure that data
wouldn't be lost.

• The questionnaire was designed in Netscape and the layout appeared distorted
initially when running in Explorer.

Where this kind of service is not available, there may also be standard procedures in place for
implementing web forms once they have been created by the researcher. This may involve a
mailing facility whereby the data is automatically formatted and delivered by email when the
form is submitted. It may also involve a facility allowing the data to be downloaded in an
appropriate format for importing into a statistical analysis, database or spreadsheet package.

Example

Tim Vorley (Department of Geography, University of Leicester)

Why did you use web-based questionnaires?

I used web based questionnaires not because they are innovative, but because they were
wholly appropriate. They offered a dynamic alternative to paper based questionnaires, with the
prospect of a higher return rate as there is no work involved other than the responses
themselves. Also the automatic coding of answers meant that responses could be interpreted
quickly and saved into databases and separate files relating to each respondent.

What experience of web page production had you had prior to setting up these
pages?

I had no experience of web programming before creating the first version of the online
questionnaire. HTML was easy to pick up and so I was able to teach myself the majority of
what I needed to know, but support was available.

Did you use a WYSIWYG editor like Macromedia Dreamweaver or Microsoft
FrontPage or code them by hand?

The web-form was created using a combination of WYSIWYG and hand coding – I think there
are pros and cons to simply using WSYIWYG as it is important to understand what you are
doing and how you are doing it to avoid confusion further down the line!

How did you go about implementing your questionnaire?

Firstly, I read up about basic HTML programming and learnt the basics. This allowed me to
develop the skills needed to produce my questionnaire. I then took advantage of the
University’s facilities to host the questionnaire and to link it to server-side scripts allowing the
data to be automatically emailed to me.

 8

What kind of support did you receive?

The computer centre at the university offered a good level of support in setting up initial web-
form and the server-side scripts for submitting results. Subsequently they helped iron out
minor problems with the format of the questionnaire and the way in which results were
received via server-based emails.

What exactly were these problems and how did you solve them?

Firstly I had problems with the frames in the webpage. By playing with the page, I managed
to get the optimal viewing resolution lower so it appeared on even the lowest resolution and
was easier to read. The problem with the automated replies was firstly with the coding.
Initially the responses were uncoded and were received in a format that made it difficult to
deal with the data. Both of these issues were resolved through trial and error and with the
advice of the computer centre until I was receiving the results in the most user-friendly
manner.

Why didn't you use off-the-shelf questionnaire software?

Using my limited and self taught knowledge of HTML programming I used Microsoft FrontPage
to produce a clear and simple web-based form, designed using university corporate logos and
colours. This was preferred over using off the shelf software because of the ability to build the
web-form to my exact specification, also using widely available software meant teething
problems were solved with the computer centre. At the initial time of conception I was also
unaware of any appropriate software for designing questionnaires, and on further enquiry did
not have the resources to purchase such software.

What did you do to check the data you received?

All of the respondents to the questionnaire were invited. With name and contact details on the
questionnaire itself, responses were verified and constituted the basis for determining whether
respondents would subsequently be interviewed. None of the data collected was explicitly
presented within the research statistically or otherwise, but informed the interview process.
The fact that the questionnaire was sent to invited respondents meant that security was not
really an issue so I avoided many of the problems involved with ensuring the integrity of
results and respondents.

Would you use the same system again if you were to do a similar study?

The system was easy to use and worked for me on this occasion. I am not the greatest fan of
using surveys or questionnaires; however this was a lot easier to manage than a traditional
paper based survey at every stage. The ability to modify questions and responses that did not
work or were inappropriate after the pilot study was easy to do at any time when the initial
questionnaire was set-up. If I did need to use a survey again I would use online over
traditional every time!

What advice would you give to people in using systems like these?

I'd say to be persistent! If you have an idea, the chances are that it is possible but you just
aren't sure how to do it at the moment! As a social scientist my forte is not designing websites
or programming, but there are people out there who can help - the challenge is finding them
and learning something new!

In some cases, the institution may have purchased a site licence for an off-the shelf survey
creation and administration package which may be suitable for the purposes of the research
project.

In educational institutions in particular, site-licences may also have been purchased for
assessment software which may provide the facilities needed for the questionnaire. These are
generally designed to allow students to answer a range of questions, such as multiple-choice
questions or short text entry questions, online and submit their answers. The tutor can upload
the questions and perhaps set passwords for each individual participant. They can then

 9

download answers and see reports on the answers of individuals or groups. Because these are
the same functions as those of basic survey creation software, this can be a straightforward
(and free) way of implementing the questionnaire if the software is sophisticated enough for
the needs of the study (e.g. by offering an adequate range of different question types).
However, it should be remembered that these tools may only be available to participants
within the institution.

The procedures for using these systems are often available on the institution intranet or
through contacting computer services.

Using 'off the shelf' solutions

Software and services

A wide range of software is available that is designed to allow easy creation and administration
of online questionnaires. There is a great deal of variety in the features available, and also the
cost. There are a number of free open source examples which allow users to create basic
forms with little knowledge of web programming. A variety of commercial software is also
available, at a wide range of prices. Many of these offer different features according to the
prices paid and it is common for them to offer free trials which are limited either in the
number of respondents who can be surveyed or in the length of time the survey can be made
available. The majority offer hosting services for those who do not have suitable access to a
server, or who prefer to avoid installing and maintaining software.

The major advantage of these facilities is that they can reduce the need for web-design and
programming skills. The majority of them offer a form-style interface into which the
researcher adds questions and decides the type of web-form element they would like to use
for answer. They also typically allow a range of formatting options and choices for validation,
such as whether or not a response to particular questions will be required before submission.
They can also provide server space if required and can allow a secure means of saving and
retrieving data in a format such as comma-separated values (CSVs) suitable for easy input
into common spreadsheet and statistical analysis applications. Other examples offer automatic
analysis of data or facilities to easily cross-tabulate or filter results.

However, in some cases, they can also serve to limit the options available to researchers who
may have particular design, validation or analysis needs not easily catered for by 'standard'
software. Some basic knowledge of web design and programming can serve the researcher
who wishes to 'tweak' the content or look of the surveys produced by these programs well.

See the 'Choosing software' and 'Using software' sections of this guide for further information,
including the following:

• Examples of the different types of software available

• An overview of the different features and levels of sophistication commonly
offered by providers.

• Guidelines for choosing software and the opportunity to develop a personalised
checklist for use when comparing different options.

• A general outline on how to use the software.

Consultancy

There are many organisations that offer consultancy services for online questionnaire creation
and administration. These range from advice and assistance with particular aspects of the
process, to complete design, hosting, management and analysis services. Examples of these
include those provided by academic research institutes such as the Bristol Online Survey
services offered by the University of Bristol's Institute for Learning and Research Technology
(http://www.survey.bris.ac.uk), and those provided by commercial companies such as the

 10

survey shop, the research services arm of the snap survey software company
(http://www.snapsurveys.com/ surveyshop/servicesweb.shtml). Of commercial market
research options, Evans and Mathur (2004)'s examination of the involvement in online surveys
of the largest US-based and global market research firms provides an extensive list of the
services offered as of late 2004.

Self-produced questionnaires
There are a number of cases in which a researcher may wish to carry out the whole process of
creating and administering an online questionnaire:

• The researcher may have access to a suitable server on which to house a self-
produced questionnaire, and have the web design or programming skills
required to do this or be keen to control all aspects of the process.

• Technical support or institutional systems may not be available or may not be
robust enough to provide an acceptable solution. (The use of an 'off-the-shelf'
software solution may be more efficient in many cases).

• Where the technical requirements of the planned questionnaire are 'standard', it
is frequently possible to obtain a wide range of freely available server and
client-side scripts that can be used to set up the survey. With a little effort, a
researcher with basic skills is likely to be able to acquire the knowledge to do
this successfully and to customise where necessary. (Again, the use of 'off-the-
shelf' software may be more appropriate).

• Where the nature of the planned survey is particularly complex and involves
features that are not likely to be easily available without bespoke programming.

Example

Martin Bruder (School of Psychology, University of Cardiff)

1. Why did you decide to use a commercial internet hosting service rather than using
the services offered by your university?

As I am doing my PhD at a number of different universities (Cambridge, Cardiff, Freiburg,
Berlin), I did not want to depend on any university services for running my studies (I often
find it hard to solve problems, when I am not actually there). I am now using a commercial
provider (rather cheap) which offers php-support (I understand that universities often do not
offer this support or need time to check any scripts). As long as no reaction time measures are
involved, this seems to me a very good solution.

2. Why didn’t you use some of the off-the-shelf questionnaire software which is
available online?

I did not use any software package to produce my studies, because I like to have full control
over what is displayed, how the data is stored, etc. (often, for example, software packages
rely on cookies to temporarily store the data, which I don't like). At least for questionnaires
and simple experiments, the programming seems to be manageable (and I am really not a
computing specialist).

3. What kind of technologies did you use to implement your questionnaires, and
have they been successful from a technical perspective?

My studies use nearly exclusively php (and mysql for saving the data) and have been working
perfectly well. For questionnaire-based studies without reaction time measures, I think server-
side programming really is the way to go and I am confident in saying that pretty much
anyone with a Web browser can see and use my pages.

4. How did you achieve this level of accessibility?

 11

JavaScript is only used for setting cookies (in order to check for multiple participation) and
checking whether answers have been provided in order to remind participants that they might
have forgotten to fill in an answer (both only in one of the studies). So if anyone has switched
JavaScript or cookies off, he can still participate.

5. What did you do to check the data you received?

For fraud detection, I look at IP-addresses, cookies that I set and display a message if a
cookie is set. Also, it seems a good idea to receive all the submissions by e-mail as well as
saving them to a file. This way, one quickly gets a feel for "unusual" patterns of data
submission (e.g. very many in a very short time) and can check the respective data sets more
carefully.

6. What experience of web page production had you had prior to setting up these
pages?

I had no experience before starting online studies (well, my first Website was actually a signup
page for lab participants including a questionnaire measure).

7. Did you use a WYSIWYG editor like Macromedia Dreamweaver or Microsoft
FrontPage, or code them by hand, and did you have to learn many new skills to do
this?

I code my pages by hand using a freeware tool called HTMLkit. I had to learn to understand
what html does (which is really fairly quick) and how pages can be formatted using Style
Sheets. Learning this really does not take that long (maybe 15-20 hours).

8. Did you write your own php scripts to write to the database and send the email, or
did you use or adapt an existing one? Again, did you have to learn many new skills?

I used and adapted existing scripts. Although I understand the basic principles of
programming, I find it very hard to put it all exactly the right way and there are lots of scripts
freely available online (many of the bits one needs for a questionnaire study - like setting
cookies, retaining referrer URL, retaining IP-address are fairly standard and only short pieces
of scripts). I have to say, though, that for one study that involves multiple randomisations and
lots of different conditions, I had quite a bit of help by a friend who does computing. So if I
had to do such a study all by myself, I might either have to put in more time to learn how to
properly program or find a tool that I could use. But this does not apply to simple
questionnaires.

9. Presumably you developed your questionnaires on a test server (apache?) on your
home computer, and then uploaded them to the commercial provider (FTP?). Is this
correct?

Yes, I installed foxserv (includes apache and mysql). Often, however, I upload it directly and
test it online.

10. How did you choose which provider to go with?

There are lists of the 10 or so best Web providers for each country (my provider is in
Germany). I knew I needed php- and mysql-support, so then I compared the prices for the
ones that offered these and was either lucky or they are all good. So far, I never noticed any
interruption of service.

11. Finally, would you recommend your methods to other researchers?

Yes, although, thinking about it, I might not have done things the most efficient way. The
reason being that I did not mind so much investing some time - just out of curiosity.

 12

Technical knowledge and skills required
Table 1. The importance of different sets of knowledge/skills when different methods are used
to create an online questionnaire.

Knowledge/skills Institutional systems Self-produced 'Off the shelf' solutions
Knowledge of how to use questionnaire software N/A N/A HIGH
Basic knowledge of HTML (and possibly CSS) HIGH HIGH MEDIUM/LOW
Design issues HIGH HIGH MEDIUM
Form elements HIGH HIGH MEDIUM/LOW
Validation routines HIGH HIGH LOW
Server issues MEDIUM/LOW HIGH MEDIUM/LOW
Server-side processing LOW HIGH LOW

Table 2: A list of the technical knowledge and skills required to produce an online
questionnaire with the reasons why each skill is required.

Knowledge/skills Reason
Understanding of the different facilities
provided by different questionnaire
software and hosting providers. Familiarity
with the interface of chosen software and
procedures for creating and managing the
questionnaire.

There are a great many 'off-the-shelf' for online questionnaire software
solutions available and if a researcher decides to take this route, time
may be needed to become familiar with the options and facilities
available. Once a choice is made, it is necessary to become familiar with
how the software is used. The complexity varies greatly and options with
relatively limited functionalities are often very quick and easy to learn.
However, examples that offer advanced functionalities may also be
relatively difficult to learn to use effectively.

Basic knowledge of HTML (and possibly
CSS)

It will be necessary to create and appropriately format HTML pages and
web forms. This can be done with a simple text editor or with 'What you
see is what you get' editors such as FrontPage or dreamweaver. These
can make the process of creating HTML pages more efficient, but a basic
knowledge of HTML and CSS is very useful in using these packages
effectively. Where form-creation software is used, knowledge of HTML and
CSS will allow you to customise the look and feel of the questionnaire
after it has been produced. Even with well-designed software, problems
can emerge when HTML is automatically produced, and this knowledge
will allow you to deal with this as effectively as possible by 'going to the
source' if necessary.

Design issues An awareness of design issues related to general web-design (use of
colour, optimisation of graphics, design for a range of screen resolutions
and browser types, accessibility issues etc) and those specifically
connected to online survey design (progress bars, tables for matrices etc)
will be needed to make the survey more effective and reduce
measurement error. Where form-creation software is used, this allows
easier customisation of templates and response to problems that the
process of automatic HTML production may create.

Form elements The use of common form elements will be required to collect the data for
processing. Where software is used to automatically insert forms and
elements, customisation will be easier.

Validation routines Client-side validation routines using JavaScript can be used to check the
data that has been entered before it is allowed to be submitted. If this is
used effectively it can reduce problems of invalid data and multiple
submission.

Server issues The questionnaire will need to be placed on a suitable server connected to
server-side processing facilities. Knowledge of server technology and
security issues will be required to do this independently and, where
support is available, a sound understanding will be helpful in getting this
done effectively.

Server-side processing The use of suitable server-side scripts will be necessary to allow the data
to be processed and delivered or automatically inserted into a database.
It will also be required to provide the respondent with a suitable
acknowledgement that their submission has been successful.

 13

Choosing software for online questionnaire
production

Introduction
Online questionnaire software is designed to make the process of producing the HTML and
necessary scripts possible for researchers with little or no technical knowledge. It generally
provides a form-style interface to allow the questionnaire to be built up through inputting the
questions and response types, and selecting pre-programmed features such as required
responses, skip patterns, randomised ordering of choices, and resubmission checks.

There is a huge range of options available. At the time of writing, the WebSM searchable
database of online questionnaire software and services
(http://www.websm.org/content.php?p1=82&p2=272&p3=1086&id=1086) has 408 entries
categorized according the following:

1. Type (software or service)
2. Code availability of software (open or closed source)
3. Charges
4. Language
5. Country where offices are located

The Association for Survey Computing searchable software register of software also lists 79
examples of software that can generate online questionnaires. A simple Google search reveals
many more examples of online questionnaire software with a vast range of features and prices.

This page will offer examples of the different types of software available and consider the
different features and levels of sophistication commonly offered. It will also explore the factors
involved in making a choice of software, allowing you to develop a checklist for use when
comparing different options.

NB. Any references to prices or features are correct at the time of writing, but should be seen
only as a snapshot of what is on offer in April 2005. References to particular software
providers are given only as examples of the options available and should not be seen as an
endorsement of any particular products or services, nor as a guarantee of quality.

Software plus hosting
For researchers without suitable access to a server, or for those who prefer to avoid installing
and maintaining software, a wide range of hosting services are available. In the majority of
cases, the whole process of producing and implementing the questionnaire is carried out
online using a form-based interface. Many companies that offer 'software only' options also
tend to have hosting facilities which registered users can take advantage of.

There are a great many companies offering services targeted at all levels of users from those
offering design, hosting and analysis facilities for individual researchers for free, to those
offering solutions to multinational companies for thousands of pounds. Many offer a variety of
products targeted at different users with special rates for small-scale individual use. Others
offer educational rates or even free services for researchers who are prepared to fulfil certain
conditions such as having a link to the company on the institution website, and being prepared
to contribute their survey questions to libraries of question types for reuse.

If the researcher decides that this type of service is suitable for his or her study, a number of
questions must be considered when choosing a service. The aim should be to find an
appropriate balance between cost and features required.

 14

Cost

The cost of the services is often dependent on the number of respondents, questions and or
surveys. Most charge a fixed monthly or annual fee, often setting limits on the number of
completed surveys and charging additional fees for each survey beyond this maximum.

Many offer different levels of service, at different prices, usually with names such as 'basic
edition', 'standard edition' or 'professional edition'. This generally involves differences in the
maximum number of surveys allowed and differences in the levels of technical support offered.
It may also involve additional features such as more advanced analysis and reporting tools,
and more sophisticated question types and questionnaire options.

Given the competitiveness of the market, the majority of the services offer clear pricing
information which can be linked directly from the home page. This tends to allow relatively
easy comparison of different providers.

Available features

Many of the software company websites offer product demonstrations, tables of features,
example surveys, and/or the creation of free demonstration surveys to 'sell their wares'. This
makes it relatively easy to check the features that are available, but can also quickly lead to
information overload.

A useful example survey which includes comments on the features illustrated by particular
questions can be found on the demo pages of the SelectSurveyASP service at
http://www.classapps.com /SelectSurveyASPDemo.asp (Note that this software does not offer
a hosting service).

Surveyz is one of many options that offer a fully functional trial of their software and hosting
service which allows the user to quickly get a feel for the functionality and options available.
Registration is required to activate this trial and the trial is restricted to a one-month period,
one questionnaire active at any one time, and a total of 25 responses.
http://www.surveyz.com/

It is a good idea to create a checklist of the features that you are likely to require. This can
then be compared to the features offered by different providers. It can be particularly useful in
enabling a minimum level to be established where a provider offers increasing levels of service
at different prices.

The 'checklist questions' below will guide you through the process of developing such a
checklist according to the needs of your study.

Examples of services available

The following examples are chosen as being representative of some of the different types of
services available. In each case, a range of comparable options may be available.

Service Comment
Bristol Online
Surveys

Targeted at institutions requiring the option to have a number of different surveys and survey
administrators. Highly customisable to the style needs of institutions including an option to run
surveys on their server with an address that appears to be that of the institution.

Educara Survey An open source tool which offers hosting for an annual fee. The price rises according to the type of
use, with students paying the least, and commercial organisations the most.

Research together Targeted at research students. Offers a simple questionnaire production and hosting service,
allowing users to download results as comma-separated values for import into an analysis package.
Relatively inexpensive one-off payment, but without many of the more sophisticated functionalities
such as email list management or analysis tools.

SurveyConsole /
QuestionPro

Both are divisions of the surveyanalytics company and they use the same software and interface,
but with different pricing. May offer sponsored use for academic or not-for-profit projects if certain
conditions are met. Also offer a range of free resources such as articles and question templates.

surveymonkey Compares well with many of the other available services in terms of features, but is one of the
cheapest commercial options.

 15

surveywriter Relatively expensive, but unusual in that charges are not made per period of use, but per
completed survey and email invitation with a minimum of 200.

Surveyz! A range of relatively sophisticated features. Targeted at individual researchers or at institutions.
Offers academic pricing and free use for academic projects if certain conditions are met. Also has a
range of resources such as articles on online questionnaires and copyable templates of
questionnaires and questions.

websurveyor Relatively expensive, but with a wide range of features. Offers both hosting and software only
solutions.

zoomerang Offers pricing for not-for-profit and educational institutions. Also offers a range of research services
such as questionnaire administration, panel services and translation.

Software only
The use of software only solutions depends on the researcher having access to a suitable
server with adequate administration permission to, for example, create and access a database.
It also requires the software to be installed and configured correctly and for any possible
problems that might emerge to be dealt with. Where these requirements can be met, this type
of software can have a number of advantages. These may potentially include:

• Savings of cost, especially when used in the longer-term

• Increased control over data collection and storage

• More opportunities to work offline if required

Some examples of this type are also primarily designed as survey analysis software which can
offer generally more sophisticated analysis tools where required.

Open source options

Locating software

Two of the major sources of information on open source software are SourceForge.net at
http://sourceforge.net which is a repository of open source projects, and freshmeat.net at
http://freshmeat.net/ which is a listing of new software releases.

A simple search for 'survey' reveals a range of projects providing software for online
questionnaire creation. These range from simple survey software with limited question types
and functionality, to options with features which compare very well with the majority of
commercial options.

Choosing options

When choosing whether or not to use an open source solution, it is important to consider the
following potential problems:

1. They do not tend to offer hosting, and installation and configuration can be
complex (though this may be less problematic than with commercial software-
only alternatives).

2. The user-interface for the software can be more complex in some cases.
3. Documentation such as user-guides may not be as extensive.
4. Where problems are encountered, suitable technical support may not be

guaranteed.

Making a successful choice depends on identifying whether or not the software provides the
features required. The 'checklist questions' below will guide you through the process of
developing a checklist according to the needs of your study which can be used when
comparing software. In many cases the information on the features available is less extensive
than commercial options, though many of the more established options offer demonstrations,
examples and feature lists.

 16

It is also necessary to ensure that the software can be installed and configured on a suitable
server, and that someone with the necessary skills is available to maintain it successfully and
deal with problems. An indication of what is typically involved in this is given by the
administrator's manual for phpSurveyor at http://phpsurveyor. sourceforge.net/docs.php.
Many of the other open source options also have similar installation guides which can be
accessed through the project website or downloaded with the software.

Finally, it is important to check that the software has an adequate level of reliability. The JISC
open source software advisory service, OSS Watch, at http://www.oss-watch.ac.uk/ offers
useful guidance on criteria for choosing reliable software. Some key factors identified are:

1. Reputation - Have you spoken to people with experience of a particular product?
2. Ongoing effort - Is there clear evidence of active development of the software?
3. Community support - Is there an active community of users on the project

mailing list ready to answer questions from users experiencing problems?
4. Version - Has the latest stable version been available for some time and is there

evidence that problems have been identified and fixed?
5. Documentation - Is this sufficient to allow you to decide whether or not the

software is sufficiently well-developed for your purposes?

See the page of 'Top Tips For Selecting Open Source Software' at http://www.oss-
watch.ac.uk/resources/tips.xml for further details.

Examples

The following are some of the main examples of open source software for online
questionnaires (generally the more established and/or sophisticated options). A range of other
options may be available.

Software Comment
Educara
Survey

In addition to the software, offers hosting for annual fees at rising prices for students, academic or
not-for-profit institutions, and commercial organisations respectively.

LE Survey Designed as a tool for running questionnaires as part of longitudinal studies. Allows respondents'
responses to be matched to responses to previous questionnaires while maintaining confidentiality. In
early stages of development at the time of writing.

phpESP Well-established software with a working demo available allowing the features and user-interface to be
tested.

phpSurveyor A range of relatively sophisticated features. Well-established with useful documentation. Working
demos are available allowing the features and user-interface to be tested.

Mod_Survey Well-established with sophisticated features such as dynamic content generation depending on
previous answers. Requires the user to learn to use XML syntax particular to the software

VTSurvey Easy to use and particularly useful for straightforward questionnaires as only the four main types of
questions are supported (Multiple choice with radio buttons and Check boxes, and short and long text
entry boxes).

Commercial options

Choosing options

Documentation and technical support for commercial options tends to be more extensive than
that offered by open-source software, but in many cases there are charges for a support
package. They frequently offer powerful statistical analysis, and many can be used to develop
and analyse questionnaires off-line. In the majority of cases, hosting services are offered for
an extra cost.

A number of the commercial options were originally designed as software to aid in the
production and analysis of questionnaires in paper-based and other modes, often with online
questionnaire functions added later and offered at extra cost. Others offer online questionnaire
functions as part of a set of 'add-ons' allowing, for example, computer-assisted telephone
interviewing (CATI) or surveys for Personal Digital Assistants (PDAs) or other mobile

 17

computing technologies. This can make them a particularly effective choice when there is a
need to integrate mixed-mode surveys.

It is useful to list the features required for your study which can be used when comparing
software. The 'checklist questions' below will guide you through the process of doing this,
providing you with some of the main questions to consider.

Examples

The following are some examples of commercial software for online questionnaires. A range of
other options are available.

Software Comment
Questionmark
Perception

An educational assessment tool which offers many of the key features needed to create basic
online questionnaires and has some of the more advanced features such as randomisation of
questions and conditional branching. Potentially useful option if the software is available through
the researcher's institution.

SelectSurveyASP Relatively inexpensive. Offers 'classic' and 'advanced' versions with different levels of features at
different prices. Has a working online demo and a useful example survey which includes
comments on the features illustrated by particular questions. Offers a free installation service and
free technical support.

Snap Surveys Extensive options for mixed-mode surveys, offering a 'core product', Snap Professional with add-
ons for questionnaires via internet and PDAs, and to allow scanning and multiple data entry.
Expensive example of 'high-end' options.

SphinxSurvey Extensive analysis tools including a version offering lexical analysis. Educational and public-sector
pricing offered.

StatPac The online questionnaire software does not include analysis tools, but it can be purchased
alongside the statistics tools offered. Has basic statistical tools or an advanced version allowing
multivariate statistical techniques. Technical support and updates are available free for three
months, but are chargeable via annual support/maintenance agreements thereafter. A fully-
functional version of the software can be downloaded and used for free, limited to 35
respondents for each survey. Download includes tutorials and extensive user guide.

Checklist questions
The following questions can be used as a checklist for comparing different products and
services after deciding which of them apply to the questionnaire:

General

Does the service allow you to collect the maximum number of completed questionnaires you
expect without extra charges?

Does it allow the maximum number of questions you need to include in your questionnaire?

Will you be within your budget if you use the service to keep the questionnaire open for the
time you need?

Do you need only one questionnaire or do you need multiple questionnaires to be online at the
same time?

Do you need a one-page questionnaire or one that spans multiple pages?

Do you expect all the participants to complete the questionnaire online or do you need to be
able to use the online questionnaire in tandem with paper-based versions? Can paper-based
versions of the questionnaire be easily produced?

Does the interface seem to be easy enough to understand and use in the time available?

Is online and/or telephone technical support on the use of the service available if required?

 18

Question creation

Does it produce all the question types you would like to include?

Are there any limits to the number of choices for particular question types? Is this a problem
for your questionnaire?

Can questionnaires be imported from word-processor or text files?

Is the layout and positioning of questions and answers acceptable? Can this be controlled?

Can you save the questions you have input and continue creating the questionnaire at a later
date?

Is there the option of requiring a response to certain questions?

Can you randomise the order of possible responses?

Design and layout

Does it produce pages that have no major differences when viewed in different browsers or
with different screen resolutions?

Is there a choice of templates? Are they suitable? Are the layout and colour schemes
acceptable?

Do any templates allow easy customisation?

Is it possible to add extra design features to individual pages, such as images, extra text or
line breaks?

Can you easily add features such as images, headers or footers to all pages?

Questionnaire settings

Is the statistical information offered by the software extensive enough for your needs? (e.g.
can it record IP addresses of participants, approximate time taken, response rates for each
question etc.)

Can the number of questions per page be easily controlled?

Can skip patterns be established so that the participant is directed to alternative questions
depending on responses to particular questions?

Can the navigation be customised? Can the text on buttons be customised and is there a
choice over whether or not a respondent can navigate back to completed sections?

Can multimedia stimuli such as video and animation be included?

Does it allow randomisation of the order of questions or responses within questions?

Can cookies be added to the participant's computer to prevent multiple submission from the
same machine?

Can this use of cookies be controlled to allow particular machines to make multiple
submissions (e.g. where a suite of computers may be used by different participants, or for
data entry from paper-based versions)?

Does it allow for the inclusion and placement of a progress bar?

 19

Implementation and security

Are the welcome pages and post-submission messages fully customisable?

Can you link to a webpage of your choice once the questionnaire has been submitted?

Can you enter a closing date for the questionnaire and add a customisable message to those
who attempt to access it once closed?

Does it offer the access control you need, such as the ability to set passwords or limit access
to those from particular IP addresses?

Are you satisfied by any security statements made?

Is there an option to encrypt the information on a secure server?

Distribution

Is there an email management list?

Can you insert individual email addresses?

Can multiple email addresses be imported?

Can you select the whole list or a subgroup of the list to send a message to?

Can you send personalised emails by merging personal information into a standard email?

Can the link to your questionnaire be easily incorporated into emails?

Can you send your entire questionnaire as an email?

Can you easily incorporate a link to the questionnaire into a website?

Can you record which of several links was selected by the participant?

Can a pop-up version of the questionnaire or of a link to the questionnaire be activated when a
user enters the site?

Results and analysis

Can results be received by email alongside saving them to the database?

Does it allow the data to be downloaded in a format that can be easily imported into the
statistical analysis package you plan to use?

Are there any limits to the number of times that you can download your data? Is this a
problem for your study?

Can you choose whether you would like to include all data in the download, or only data from
a particular period?

Can any extra information you need be easily included in the data files (e.g. IP addresses and
start and completion times)?

Is the statistical analysis and reporting offered by the software sophisticated enough for your
needs?

Can you view individual results and overall results on an on-going basis?

Does it offer the option to delete or edit results?

 20

Are there the viewing options you require (e.g. Can you view the results as percentages or in
the form of a particular type of chart)?

Can you easily access the statistical information you need from within the software?

Does it offer filtering options so that results can be analysed according to the response to
particular questions (e.g. focusing on gender or age)?

Is cross-tabulation of results possible, so that correlations between particular questions can be
analysed?

 21

Using software for online questionnaire
production

The interface and features of different online questionnaire software may vary. However, a
typical procedure for creating and administering a questionnaire is shown below. At each stage,
screenshots taken from different examples of software are provided to give an indication of
how they tend to be used.

Create the questionnaire
1. Create a new page by adding a title, selecting formatting options and adding

any logos required. (Alternatively, copy a previous survey to amend or choose a
template from a list of options).

The survey editing interface of the SurveyMonkey.com service (http://www.surveymonkey.com/)

 22

2. Add a question by selecting from a list of question types.

The phpSurveyor question creation interface (http://phpsurveyor.sourceforge.net/index.php)

 23

3. Input the question and responses. Select options such as whether an answer is
required, whether the order of responses should be randomised etc.

The questionPro.com question editing interface (http://www.questionpro.com/)

4. Add any images, extra text or line breaks as required.
5. Add further questions on the same page or add further pages.

Edit the questionnaire settings
Many software plus hosting services offer a number of questionnaire settings options which
allow the user to incorporate features such as the following:

1. Visual appearance or layout options such as customised headers, footers and
images.

2. The inclusion of skip patterns if required, so that the participant is directed to
alternative questions depending on responses to particular questions.

3. Customisation of button text, and choice over whether or not a respondent is
given the option to navigate back to completed sections

4. Inclusion of multimedia stimuli.
5. Randomisation of the order of questions or responses within questions.
6. The addition of cookies to the participant's computer to prevent multiple

submission from the same machine.
7. The option to automatically link to a particular web page on completion of the

questionnaire, or to add a completion message.

 24

8. The ability to enter a closing date for the questionnaire and to add a
customisable message to those who attempt to access the closed survey.

9. The option of emailing the results to the researcher alongside saving them to
the database.

10. Password protection for the survey.
11. The inclusion and placement of a progress bar.

The following is a screenshot showing some of the options provided by 'ServeyZ!'

Extract from the surveyz.com questionnaire settings page, named 'survey controls' (http://www.surveyz.com/).

 25

Select the distribution options
Depending on your method of recruitment, many of the services allow you to easily choose
and implement distribution options.

Email:

1. Insert or import the email addresses of your sample group.
2. Select the whole list or a subgroup of the list to send a message to.

The email management interface of the SurveyMonkey.com service (http://www.surveymonkey.com/)

3. Add the message, incorporating the link to your questionnaire and, where
available, include fields to allow you to personalise the emails by merging
individual information into a standard email.

 26

Other options:

1. Copy the link to the questionnaire into a website (perhaps with the added
functionality of recording which of several links was selected by the participant).

The website link facility available at Surveyz.com (http://www.surveyz.com/)

 27

2. Alternatively, copy the necessary HTML and code into your website to activate a
pop-up version of the questionnaire when a user enters the site.

The popup survey facility available at SurveyConsole.com (http://www.surveyconsole.com/)

Collect and analyse the results
Many software plus hosting services offer the opportunity to download results or to analyse
results online through the package.

Downloading results

1. Select from options allowing you to choose the type of data file to download
(e.g. 'Comma-separated values' files allowing easy import into packages such as
Microsoft Excel, HTML files, or SPSS Syntax files)

2. Choose whether you would like to include all data in the download, or only data
from a particular period.

3. Decide on the format you would like to download the data in (e.g. whether all
the data from an individual use should appear on one row, or whether multiple
selections should appear on their own rows).

 28

4. Select the extra information you would like to include in the data files (e.g. IP

addresses and start and completion times).

Extract from the SelectSurveyASP data export page (http://www.classapps.com/)

5. Press the export or download button and save the file to a suitable location.
6. Open the file in your statistical analysis package.

Analysing results

Many service providers offer analysis facilities such as the following:

1. The ability to view individual results and overall results on an on-going basis.
2. Different viewing options (e.g. as percentages or in the form of various charts).
3. Basic statistics such as mean and standard deviation.
4. The chance to delete or edit results.
5. Cross-tabulation of results so that correlations between particular questions can

be seen side-by-side and analysed.
6. Filtering options so that results can be analysed according to the response to

particular questions (e.g. focusing on gender or age).

 29

The following is a screenshot showing some of the options provided by 'ServeyZ!'

Extract from
the surveyz.com 'view results' page (http://www.surveyz.com/)

Software designed primarily for statistical analysis, but with online questionnaire capabilities
also tends to offer more options such as multivariate statistical techniques or lexical analysis.

 30

Introduction to HTML 1

Introduction
HTML (Hyper Text Markup Language) is the technical language that lies behind most web
pages. Increasingly it is possible to get by without a great deal knowledge of HTML by using
WYSIWYG (What You See Is What You Get) software packages such as Macromedia
Dreamweaver or Microsoft FrontPage. These tools allow you to create webpages and online
questionnaires without any knowledge of HTML, but a basic knowledge remains useful as it will
give you more control and allow you to deal with any problems that emerge more quickly.

This page will provide the knowledge required to produce an HTML page. Even if you intend to
use a WYSIWYG package to create your online questionnaires it is still worth spending a short
time developing a basic knowledge of HTML.

To produce a web page effectively, the only requirement is that you have a simple text editor,
such as notepad for windows, and a browser such as MS Explorer in which you can test your
pages. The next section explains how to use these tools, and it can be ignored if you are using
a WYSISYG editor.

Producing and editing web pages
The basic steps in producing and editing web pages are as follows:

Producing an HTML document

The first step in creating a web page is to produce a text file and save it as HTML.

To do this, you will need to open your text editor and copy the following basic web page into it:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>My web page</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

<body>

<h1>My Page</h1>

<p>Welcome to my web page</p>

</body>

</html>

You then need to save the file as an html page by adding an '.html' or an '.htm' extension.
Certain servers require a three-letter extension which means that it is probably safer to use
the 'htm' extension, although in most cases, there is no difference between them. In notepad,

 31

the save is done by choosing the options shown below. You should choose a folder to save the
file in and remember where you saved this file.

Notepad save options

Viewing the document

To view this document, start your browser, and open the page by choosing 'File', then 'Open'.
NB. Make sure you are working offline if you pay for your internet connection time. It is not
necessary to be connected to view files saved on your computer (local files).

Internet Explorer 'File' -'Open'

 32

This will allow you to type the location and file name into the dialogue box (shown below), or
select browse to navigate to the correct location.

Internet Explorer 'open' dialogue box

Changing the document

To make changes to the web page, you should change the source file in notepad, save the file,
then refresh the page in your browser, by using the 'refresh' or 'reload' buttons (shown below).

Refresh buttons from three popular browsers

You can open the source file of your own page to make changes by selecting 'View', then
'Source', as shown below.

Internet Explorer 'View' -' Source'

 33

You can also use this to view the HTML source of any web page on the internet. This is a very
effective way of developing your knowledge of HTML, allowing you to view how particular
effects within web pages have been created.

HTML Tags
HTML documents basically consist of text marked with tags which tell the browser how to
present its layout and style.

These tags can consist of elements, attributes and values.

e.g.

The following tag:

<p align="center">Hello!</p>

produces the following when placed in an HTML document:

Hello!

The tag is made up of an element, an attribute and a value as follows:

A tag showing an element, an attribute and a value

Similarly, the following tag:

<body bgcolor="#ffff00">...the body of the HTML page goes
here...</body>

adds the following yellow background colour to the entire page:

This is also made up of an element, an attribute and a value as follows:

A tag showing an element, an attribute and a value

Further details about these tags are given below.

 34

Elements
The usual pattern for elements tags is:

<Open tag> text </close tag>

e.g. 1

<p>To everyone:</p><p>Hello!</p>

This produces two new paragraphs. The first consisting of the words 'To everyone:' and
the second consisting of the word 'Hello!', as follows:

To everyone:

Hello!

e.g. 2

<p>To everyone: Hello! </p>

This produces:

To everyone: Hello!

e.g. 3

<p>To everyone: Hello!</p>
<p>Hello!!</p>

This produces:

To everyone: Hello!

Hello!!

It is good practice to ensure that your tagging is symmetrical as in the following diagram:

A symmetrical tag structure

and to avoid an unsymmetrical structure as in the following:

An unsymmetrical tag structure

This will ensure your page comply with standards help to avoid the chance of information from
being displayed incorrectly.

Although most tags follow the open tag (<>) and close tag(</>) format, there are certain key
tags which stand alone.

The three most common examples are:

 35

which produces a new line.

<hr>

which produces a horizontal line, e.g.

which shows an image (on this occasion an image called 'smiley.gif' saved in the same folder
as the web page).

e.g.

It is now increasingly common to see these tags 'closed' by the addition of a space and a
forward slash before the closing bracket, as follows:

<hr />

This is because the latest standards of XHTML state that all tags should be closed.

Attributes and values
Depending on the element used, different attributes and values can be applied. Some require
an attribute and value while, for others, they are optional extras.

The typical pattern is to include them within the tag as follows:

<element attribute1="value" attribute2="value">Add content
here...</element>

Try to maintain consistency in the use of spaces and inverted commas as in the pattern above.
This will ensure that browsers render the HTML fully and consistently, and it will also ensure
your code meets the latest standards.

Thus, for example, the following should be avoided as the browser may not connect the value
to the attribute correctly:

attribute1 = "value" attribute2 = "value"

attribute1 = value attribute2 = value

attribute1="value"attribute2="value"

Typically, attributes and values alter the style of text, images or other parts of a page. For
example, they change the size, colour, or layout in different ways.

The effect of different attributes and values is discussed within each section below.

 36

NB. For size values, it is good practice to use relative sizing rather than absolute sizing.
Relative sizes are expressed in percentage terms or, in the case of font-size, in terms of 'ems'.
These sizes allow the user to change the appearance of the page according to preference or
accessibility requirements. The use of absolute values such as pixels prevents resizing in many
browsers which may cause accessibility problems for users of the questionnaire. This issue is
discussed in greater detail in the 'Key design issues' section of this technical guide.

HTML Document structure
HTML documents should begin with a DOCTYPE (document type) definition, known as a DTD.
This declares what type of page it is and what language is being used, and it allows the page
to be validated as conforming to Worldwide Web Consortium (W3C) standards.

The breakdown of the DOCTYPE information is as follows:

• DOCTYPE HTML PUBLIC - Declares the page as an HTML page for public
browsers.

• HTML 4.01 Transitional - Declares that HTML version 4 is being used.

• EN - Declares that the page is written in English.

This must be followed by a root element '<html>' which allows the browser to display the
page. The <html> tag must be closed at the very end of the document using '</html>'

Following this information, HTML documents are basically divided into two sections. The head
and the body.

The beginning of each is marked within the 'open tags' <> and the end of each is marked by

the close tag </>. They are highlighted with arrows () in the HTML page below:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title>My web page</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

</head>

<body>

<h1>My Page</h1>

<p>Welcome to my web page</p>

</body>

</html>

More details about these sections are given below.

 37

The head
The head contains information which is basically not intended for display. It is loaded into the
browser before the body section.

A typical head sections is as follows:

<head>

<title>Add pagetitle here</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<meta name="description" content="add description here">
<meta name="keywords" content="keyword1, keword2 etc.">
<meta name="author" content="author name">
<meta name="copyright" content="copyright information ">

<link href="filename.css" rel="stylesheet" type="text/css">

<script language="javascript" src="filename.js"
type="text/javascript"></script>

</head>

Each section of this is explained below:

<title></title>

<title>Add pagetitle here</title>

This states what the title of the page is, allows the title to be displayed at the top of the
browser window, and provides a title that can be saved to a user's favourites list.

meta commands

<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<meta name="description" content="add description here">
<meta name="keywords" content="keyword1, keword2 etc.">
<meta name="author" content="author name">
<meta name="copyright" content="copyright information ">

These commands provide information about your pages. They are useful for search engines
which use them to store information about pages for searching. They also provide useful
information for allowing pages to be stored in repositories.

A common meta command is:

<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

This describes the type of content and which set of characters is in use.

 38

Other meta tags (mostly self-explanatory) are as follows:

<meta name="description" content="add description here">
<meta name="keywords" content="keyword1, keword2 etc.">
<meta name="author" content="author name">
<meta name="copyright" content="copyright information ">

Particularly useful meta tags for online questionnaires are as follows:

<meta name= "HTdig" content = "htdig-noindex">
<meta name="robots" content = "noindex">

These tags prevents search engines from indexing the page and thus prevent the page from
being included in searches. (Note that some search engine robots may ignore these tags and
index the page, but use of the tags is still likely to reduce indexing).

Cascading Style Sheets (CSS)

<link href="filename.css" rel="stylesheet" type="text/css">

Cascading Style Sheets are useful for applying styles (layout, colours, positioning etc) across
all elements of web pages. The aim is to separate the presentation of web content from the
structure.

The Style Sheet information is placed as follows:

1. In the document head between the tags

<style type="text/css">

and

</style>

or

2. In a separate file which the web page refers to through a link placed in the head (This
allows changes made to one file to work across all the pages which link to that file and
prevents the need to change each file individually). The link is as follows:

<link href="filename.css" rel="stylesheet" type="text/css">

See the 'Introduction to CSS' section for more information on the use of Style Sheets.

Scripts

<script language="javascript" src="filename.js"
type="text/javascript"></script>

Scripts (e.g. JavaScript or VB Script) are placed in the head. A reference to the script is then
placed in the body which 'calls' the script in order to perform an action such as checking that a
form element has been completed. The script will be loaded into the browser before it is
needed as the head section loads before the body.

Scripts are placed between the tags

<script language="javascript" type="text/javascript">

 39

and

</script>

As with CSS, scripts can be saved in a separate file which the web page refers to through a
link placed in the head (Again, this allows changes to be easily applied to all the pages which
use a particular script).

The link is as follows:

<script language="javascript" src="filename.js"
type="text/javascript"></script>

See the 'Introduction to JavaScript', 'Key design issues' and 'Form validation' sections for more
information about scripting.

The body
The body of an HTML document contains the main display content. It is here that text, images,
links, form elements, tables and lists are placed.

A brief overview of each of the main types of content (with the exception of forms) is given in
the next section of this guide, 'Introduction to HTML 2'. For information about creating forms
in HTML, see the 'web forms' section.

 40

Introduction to HTML 2

Introduction
The body of an HTML document contains the main display content. It is here that text, images,
links, form elements, tables and lists are placed. The following paragraphs give a brief
overview of each of the main types of content, with the exception of forms which are covered
in the 'Web forms' section of this guide.

In each case, general information about controlling style and layout within tags is included.
However, it is a good idea to consider the use of Cascading Style Sheets to create these
effects (See the 'Introduction to CSS' section of this guide). This tends to lead to 'cleaner'
HTML with less need for repetition of long tags with a great deal of attributes and values for
style. It also makes it easier to alter styles across an entire page or series of pages and
increases accessibility.

Text

Text elements

There are a range of elements used to format text. The main ones are headers, paragraphs
and line breaks.

There are six levels of headers, marked by a tag with an 'h' followed by a number from 1 (the
largest) to 6 (the smallest).

e.g.

<h1>This is my main header</h1>

Text can be positioned on a new line by inserting a line-break (
) or on a new paragraph,
by enclosing it in the <p>...</p> tags.

e.g.

<p>This is the first paragraph</p>
<p>This is the second paragraph which includes a
line break
in the middles of the line.</p>

Additionally, there are a number of styling tags which can, among other effects, underline,
italicise or embolden text. Some of these are:

Tag Effect Comment
... Adds emphasis (Usually renders in a browser as italicised text, but generally

preferred to the italicise tag <i>...</i> as it allows the effect to
be adapted in specific cases where, for example, the user is
using a text-to-speech browser).

...

Makes text stronger As above. Usually renders as bold but generally preferred to the
... tag.

<def>...</def> Indicates a definition. Usually
renders as italics.

Other 'Logical styles' that indicate a particular effect that the
browser may interpret in different ways include:
<cite>...</cite> for titles, <code>...</code> to show sections
of computer code, and <kbd>...</kbd> to represent typed text
(usually renders as mono-spaced 'typewriter' style text).

<u>...</u> Underlines text Care is needed with the use of this tag as underlined text can
frequently be confused with hyperlinks.

^{...} Places text above the horizontal line
(e.g. for footnote numbering)

The _{..} tag can also be used to create the opposite
effect.

 41

<s>...</s> Produces a line through the
text(strikethough).

Text attributes and values

Alignment

Paragraphs of text can be aligned using the 'align' attribute as follows:

<p align="center">Hello!</p>

produces the following when placed in an HTML document:

Hello!

<p align="right">Hello!</p>

produces the following when placed in an HTML document:

Hello!

...

For other formatting, the ... tag is required. This takes attributes that affect the
chosen typeface, size and colour, as follows:

Attribute Possible values Comment
<font
size="value">

1, 2, 3, 4, 5, 6, 7

+1, +2, +3, +4, +5,
+6, +7

-1, -2, -3, -4, -5, -6,
-7

The default size for paragraph text is 3, with higher numbers producing larger
text.

The default size can also be increased or decreased by a certain amount by
adding or subtracting by a value from 1 to 7.

font
face="value"

Any font, or 'font
family' (see
comment).

It is important to remember that the user's computer may not have particular
fonts that you may wish to use. Using common fonts is recommended, as is
the use of 'font-families' which provide the browser with information about
which fonts should be used as a replacement in a case where a particular font
is not available. Thus the use of the tag <font face="Verdana, Arial,
Helvetica, sans-serif"> tells the browser to use Arial if Verdana is not
available, followed by Helvetica, and finally by the default sans-serif font.

font-
color="value"

A hash-mark (#),
followed by a six-
figure 'hexadecimal'
colour code.

e.g. #FF0000 = red

There are 216 colours in the 'web-safe' colour palette. These colours are
recommended as they are not subject to variation on different types of
monitors and systems. The resources section contains a link to a palette of
web-safe colours organised by either hue (colour) or value (lightness). This
makes it easier to design appropriate colour schemes, using these colours.

<body> attributes and values

Attributes and values can also be added to the body tag to set default text and link colours
and background images and colours for the entire document.

e.g.

A background colour can be applied to the whole document by adding the following:

<body bgcolor="#00ffff">...the body of the HTML page goes
here...</body>

 42

This adds the following blue background colour to the entire page:

The colour is added through the use of a six-figure 'hexadecimal' colour code (in this case
'#00ffff'). The code is preceded by a hash mark (#). A page containing the codes for the
216 'web-safe' colours can be found in the 'Further resources' section of this module.

Alternatively, a background image can be used as follows.

<body background="bluewhitebg.gif">...</body>

This 'tiles' the image across the screen, repeating it vertically and horizontally to produce a
background. The image () is called "bluewhitebg.gif" and is saved in the same folder as the
document. The effect is as follows:

Care must be taken when using such background images as they may not render well on the
screen. If text is placed on top of backgrounds created using such images, this may also make
the page difficult to read and affect its accessibility.

Text and link colours can be set using the following attributes with different values:

<body text="#000000" link="#000066" vlink="#660066"
alink="#ff6600">...</body>

This will apply the following colour options to the whole document:

text will be black (#000000).

links will be blue (#000066).

visited links will be purple (#660066).

active links will be orange (#ff6600).

Links

Linking text

The basic tag for creation of links is:

Click to go to the University of
Leicester homepage

This produces a link as follows:

Click to go to the University of Leicester homepage

It is possible to change the link through adjusting the position on the tags:

<p>Click to go to the University of
Leicester homepage</p>

produces:

Click to go to the University of Leicester homepage

 43

It is important to avoid enclosing other tags such as paragraph tags within the link tags as this
is likely to prevent the link from working correctly.

A basic link will open in the same window. To open the link in a new window,
target="_blank" is added to the link:

<p>Click to go to open <a href="http://www.le.ac.uk"
target="_blank">the University of Leicester homepage in a new
window</p>

produces:

Click to go to open the University of Leicester homepage in a new window

Where these types of links are used, it is good practice to inform the user that the link opens
in a new window and to ensure that such links are used consistently throughout. This is likely
to reduce the usability problems that can occur when users are unaware that a new window
has been opened and are thus confused by the fact the 'back' button appears to have been
deactivated.

Linking images

Images can also be used as links:

<img src="leicester.gif"
width="192" height="54">

produces:

Linking from an image automatically adds a border around the image. To remove this,
border="0" is added to the link. As with all images, it is also necessary to add 'alt' text to
provide an alternative description for text-only browsers or in any situation when the image
cannot be displayed.

<img src="leicester.gif"
width="192" height="54" border="0" alt="University of Leicester
logo. Click to go to home page." >

produces the following:

Email links and links within pages

It is also possible to add a mailto link which automatically opens the user's email program
(if available) with the correct address automatically filled in:

<p>Our email address is OnlineRM@le.ac.uk</p>

 44

produces:

Our email address is OnlineRM@le.ac.uk

N.B. It is a good idea to refer to the email address in full in the link rather than using a link
such as email us as this allows users who do not have or use an email program that can be
automatically activated to see and copy the address easily.

A final type of link that can be used is a link within a page. This is done by inserting anchors in
the page at the point you wish to link to The anchors are named using <a name="insert
name here""> tags. The following tags produce anchor links to the headings 'Anchor
1' and 'Anchor 2'.

<h2> Anchor 1</h2>
<p> </p>
<h2> Anchor 2</h2>

This produces:

Anchor 1

Anchor 2

To link to these anchors, the following code is used so that when the link is clicked, the user is
taken to the appropriate anchor point.

<p>Link to Anchor 1</p>
<p> </p>
<p>Link to Anchor 2</p>

This produces the following links. Their effect can be seen by selecting them.

Link to Anchor 1

Link to Anchor 2

Relative and absolute linking

Links between pages are of fundamental importance in the creation of a site. Absolute linking
involves the inclusion of the entire URL as it would appear in the browser (e.g.
http://www.le.ac.uk/etc/etc.htm). This would be the typical way of linking to
external sites.

However, the usual method of linking pages of the same site and located on the same server
is through the use of relative links. This section explains how these links work.

 45

If all the site files are located in the same folder:

they are linked simply by adding the name of the document to be linked to.

e.g. For a link on the homepage (index.htm) to 'page1.htm', it is simply necessary to include
the page name and extension in the link:

Page 1

If the folder was placed on the server for the URL 'http://www.le.ac.uk', the link would take
the user to the following URL:

http://www.le.ac.uk/page1.htm

Similarly, if 'page2.htm' includes an image called 'image1.gif' it is simply necessary to link to
the image through its name and extension.

However, if the page is held in a folder':

it is linked by including the folder name.

 46

e.g. A link on the homepage (index.htm) to 'page1a.htm'. :

Page 1a

The folder name must be included with a forward slash

e.g. 2. A link on the homepage (index.htm) to 'page1ba.htm':

Page 1ba

Both folder names in the path are included.

If the folder structure was then placed on the server for the URL 'http://www.le.ac.uk', the link
would take the user to the following URL:

http://www.le.ac.uk/section1/section1b/page1ba.htm

For a link to a page further up the file tree, '../' is added to the link.

e.g. for a link from 'page1ba.htm' to 'index.htm', the link would be as follows:

Home page

Using this notation in combination, it is possible to link to any file in the same site.

Consider the following folder structure:

A link from 'page1ba.htm' to 'page2a.htm' would be as follows:

 47

Page2a

i.e. open the page called 'page2a.htm in the folder called 'section2' in the folder two levels
above this one ('section1b').

and a link from 'page2a.htm' to 'page1ba.htm' would be:

Page1ba

i.e. open the page called 'page1ba.htm in the folder called 'section1b' in the folder called
'section1' in the folder one level above this one ('section2').

Images

Formats

Though others are available, the two most common types of images in use on the internet
remain the Graphic Interchange Format (GIF) and Joint Photographic Experts Group formats
(JPEG). The filename extension for a gif is imagename.gif and for a JPEG,
imagename.jpg.

In general terms, the use of gifs is more appropriate for graphics with a limited number of
colours or line drawings. Jpegs are suitable for images with a greater number of colours such
as photographs.

In either case, it is essential that the correct extension is used for the image to work.

Attributes and values

As seen in the links section above, the basic tag for the insertion of an image is as follows:

The image source (src) value is the path to the file name which can be expressed in absolute
or relative terms (see the links section).

In addition to this, the following attributes and values are available for use. Some should be
always be included, while others are optional.

Attribute Possible values Comment
width="value"

height="value"

a value in pixels.

e.g. width="50" height="50"

Although an image that is included without the height and
width attributes will display at its original size, it is good
practice to always include them. This allows the browser
to load the information more effectively and to layout the
page correctly even before the image loads. This is helpful
for slow connections.

alt="value" A description of the purpose or function
of the image to allow its significance to
be understood by users who have text-
only browsers or in any situation when
the image cannot be displayed.

To make pages accessible, all images should have an alt
description. However, it is not necessary to describe every
detail. The text should give as concise an indication of the
image's function as possible. Where longer descriptions
are required, these should be provided through links.

Images with no importance such as spacing images should
be given an empty alt tag "" to make it clear that this is
the case.

Any images used for buttons, icons, logos etc, should
provide the information in the clearest and most concise
way possible. e.g. "*", "[?]", "[!]".

border="value" A value in pixels.

e.g. border="2"

This is most commonly used to remove the border
automatically placed around images used as links, by
adding a value of "0".

 48

align="value" left, right

top, middle, bottom

e.g. align="top"

To centre an image it is necessary to place it within a
centered paragraph using the <p></p> tags. This can
also be used to align left or right.

The top, middle and bottom values align the image on the
horizontal line.

hspace="value"

vspace="value"

A value in pixels

e.g. vspace="10" hspace="10"

Sets the space around the top and bottom edges (vspace)
and left and right edges (hspace) of and image.

This graphic has an hspace of 10 pixels.

This has an hspace of 30 pixels.

Example

The following full image tag:

<p align="center">Text<img src="leicester.gif"alt="University of
Leicester logo." width="192" height="54" hspace="20" vspace="10"
border="5" align="top" / >Text.</p>

produces the following:

Text Text

Lists

List elements

The creation of lists in web pages is straightforward. It basically involves the following tag
pattern:

<type of list>

<list item>First list item</list item>

<list item>Second list item</list item>

<list item>Third list item</list item>

</type of list>

The three main types of list are shown in the table with the HTML that produced them.

An unordered list (bullets) is as
follows:

• Item 1

• Item 2

• Item 3

An ordered list (numbered) is as
follows:

1. Item 1

2. Item 2

3. Item 3

A definition list is as
follows:
Term 1

Definition 1
Term 2

Definition 2
Term 3

Definition 3

item 1
Item 2
Item 3

item 1
Item 2
Item 3

<dl>
<dt>Term 1</dt>
<dd>Definition
1</dd>
<dt>Term 2</dt>
<dd>Definition
2</dd>

 49

<dt>Term 3</dt>
<dd>Definition
3</dd>
</dl>

'Nested' lists

It is also possible to 'nest' a list within a list.

e.g. if an unordered list (ul) is placed inside one of the items of an ordered list (ol), as follows:

Item 1
Item 2

Item 2a
Item 2b
Item 2c

Item 3

The result is a nested list as follows:

1. Item 1
2. Item 2

o Item 2a
o Item 2b
o Item 2c

3. Item 3

It is important to remember to close all tags in a list correctly and maintain symmetrical
tagging. It can become difficult to track the tags in a nested list, and any unclosed or
unsymmetrical tags may affect the way the list renders in a browser.

e.g. The tags for a basic nested list should be symmetrical, as follows:

The symmetrical tag structure in a nested list.

 50

Tables
Tables can be used in web pages for the presentation of data under headings. Because they
allow for the precise placement of information on the screen, they are often also used to
provide the overall layout for web pages. In either case, the basic elements, attribute and
values used to create the table and its rows and cells are the same.

Table elements

The element tags for the creation of a table are as follows:

<table>...</table> The beginning and end of a table.
<tr>...</tr> The beginning and end of a row.
<td>...</td> The beginning and end of a piece of table data (a cell).

Thus, the following code creates a 2x2-cell table:

<table>
<tr>
<td>cell 1</td>
<td>cell 2</td>
</tr>
<tr>
<td>cell 3</td>
<td>cell 4</td>
</tr>
</table>

cell 1 cell 2
cell 3 cell 4

Further columns can be added by increasing the number of <td>...</td> tags (New lines are

marked with):

<table>
<tr>
<td>cell 1</td>
<td>cell 2</td>
<td>cell 3</td>

</tr>
<tr>
<td>cell 4</td>
<td>cell 5</td>
<td>cell 6</td>

</tr>
</table>

cell 1 cell 2 cell 3
cell 4 cell 5 cell 6

 51

and further rows can be added by increasing the number of <tr>...</tr> tags (New lines are

marked with):

<table>
<tr>
<td>cell 1</td>
<td>cell 2</td>
</tr>
<tr>
<td>cell 3</td>
<td>cell 4</td>
</tr>
<tr>
<td>cell 5</td>
<td>cell 6</td>
</tr>

</table>

cell 1 cell 2
cell 3 cell 4
cell 5 cell 6

Table layout

The browser renders the table width as the maximum number of cells on any one row. It then
lines the cells on other rows up with these cells. If a row has fewer cells than this maximum, it
will not automatically stretch these cells to fill the space but will line them up with the ones in
the longest row, and leave an empty space in the table.

Thus a table with 2 cells on row 1, 3 cells on row 2, and 1 cell on row 3, as follows:

<table>
<tr>
<td>cell 1</td>
<td>cell 2</td>
</tr>
<tr>
<td>cell 3</td>
<td>cell 4</td>
<td>cell 5</td>
</tr>
<tr>
<td>cell 6</td>
</tr>
</table>

 52

would produce the following (a background has been applied to the cells to show the spacing
clearly):

cell 1 cell 2
cell 3 cell 4 cell 5
cell 6

In order to stretch the cells to fill the space in the table, the column-span attribute (colspan) is
used.

Thus, if colspan = "2" is added to the HTML creating the first row as follows:

<tr>
<td>cell 1</td>
<td colspan="2">cell 2</td>
</tr>

the result is:

cell 1 cell 2
cell 3 cell 4 cell 5
cell 6

Similarly, if colspan="3" is added to the <td> tag in the third row, the result is:

cell 1 cell 2
cell 3 cell 4 cell 5
cell 6

In the same way, the row-span attribute (rowspan) is used to control the spacing of rows.

If rowspan = "2" is added to the HTML creating the second row as follows:

<tr>
<td>cell 3</td>
<td rowspan="2">cell 4</td>
<td rowspan="2">cell 5</td>
</tr>

the result is:

cell 1 cell 2
cell 3
cell 6

cell 4 cell 5

Note that this only works down a table. Adding rowspan ="3" to cell five will only be
effective if the cell is moved to the first row as follows:

<table>
<tr>
<td>cell 1</td>
<td>cell 2</td>
<td rowspan="3">cell 5</td>
</tr>
<tr>
<td>cell 3</td>

 53

<td rowspan="2">cell 4</td>
</tr>
<tr>
<td>cell 6</td>
</tr>
</table>

cell 1 cell 2
cell 3

cell 6

cell 4
cell 5

It is also possible to place a new table within a table cell.

<table>
<tr>
<td>cell 1
<table>
<tr>
<td>cell a</td>
<td>cell b</td>
</tr>
<tr>
<td>cell c</td>
<td>cell d</td>
</tr>
</table>
</td>
<td>cell 2</td>
</tr>
<tr>
<td>cell 3</td>
<td>cell 4</td>
</tr>
</table>

Cell 1
cell a cell b
cell c cell d

cell 2

cell 3 cell 4

A great deal of control can be added to the spacing of tables though the use of tables within
table cells, alongside colspan and rowspan. It is thus common to use them to create the
overall layout for wepages.

Where this is done, however, it is important to be aware of how the information may be
presented for users of text-only browsers or screen-reading software, which 'read' the
information from left to right.

For example, in the following table, a text-only browser would be likely to present the
information from cell 5 before cells 3 and 4.

 54

cell 1 cell 2
cell 3

cell 6

cell 4
cell 5

It is also important to use relative sizing (e.g. in percentages) rather than absolute sizing (e.g.
in pixels) to ensure that the table will be visible on a range of screen sizes. (See the 'Key
design issues' section of this technical guide for further information on this issue).

Attributes and values

The attributes used to format the style and layout of tables are applied to the table tag
<table attribute ="value">...</table> and the table cell tags <td
attribute="value">...</td>.

Table attributes and values

Attribute Possible values Comment
width="value" A value in terms of the

percentage of the screen width
(relative width)

e.g. width="90%".

or in pixels (absolute width)

e.g. width="550".

Care must be taken when using absolute width to ensure
that the table can be viewed on smaller screens. (see the
'Key design issues' section of this technical guide).

border="value" a value in pixels. A zero border value is likely to be used where tables are
used for page layout and positioning.

cellspacing="value" a value in pixels. Defines the space between table cells.

cellpadding="value" A value in pixels. Defines the space within table cells between the cell border
and the content.

align="value" left, center, right. Used to align the entire table on the page. Only needed
where a left-alignment is not required as this is the default
alignment.

bgcolor="value" A hash-mark (#), followed by a
six-figure 'hexadecimal' colour
code.

Sets the background colour of the table.

bordercolor="value" A hash-mark (#), followed by a
six-figure 'hexadecimal' colour
code.

Sets the outside border colour of the table.

Table cell attributes and values

Attribute Possible values Comment
width="value" A value in terms of the percentage of

the table width (relative width)

e.g. width="50%".

or in pixels (absolute width)

e.g. width="250".

relative sizing for table cells can be used to set a
proportional width within absolutely or relatively-sized
tables.

height="value" a value in pixels.

Sets the height of individual cells (The entire row takes
the height of the largest cell).

align="value" left, center, right.

Sets the horizontal alignment of individual cells.

valign="value" top, middle, bottom. Sets the vertical alignment of individual cells.
bgcolor="value" A hash-mark (#), followed by a six-

figure 'hexadecimal' colour code.
Sets the background colour of the table.

bordercolor="value" A hash-mark (#), followed by a six-
figure 'hexadecimal' colour code.

Sets the border colour of individual cells.

 55

Introduction to Cascading Style Sheets

Introduction
CSS (Cascading Style Sheets - also referred to simply as 'Style Sheets') provide a means of
adding design elements to basic HTML pages. For example, using CSS, it is possible to control
the colour, positioning and spacing of objects such as text, links, images and tables. All the
main design elements of this website are produced through the use of Style Sheets.

The use of CSS separates the presentation of web content from the structure, bringing three
major benefits:

1. Design options are increased because CSS can provide more precise and
wide-ranging control over design elements on the page (though it is important to
make allowances for the fact that different browsers may interpret Style Sheet
information differently and to thoroughly test pages).

2. Changes are easier to make during design and development because
Style Sheet information is applied across all elements of a page or site. For
example, if you want to change the style of all the links, it is necessary only to
change the Style Sheet, rather than changing every link on the page or site.

3. Accessibility is increased as users can choose how they wish the site to
appear by applying their own Style Sheets to a page, or by accessing the site
content only without the style information. (It is thus important to design pages
in such a way that the content remains accessible when the design features are
removed, and to test that this is the case - e.g. by ensuring that colour is not
used to impart meaning that can not be accessed when the colour is removed).

This page will provide the knowledge required to produce a Style Sheet and apply it to an
HTML page. It does not aim to provide comprehensive coverage of CSS, but to provide an
introduction to the basics.

As with the production of HTML pages, the only requirement is that you have a simple text
editor, such as notepad for windows, and a browser such as MS Explorer in which you can test
your pages. However, most WYSIWYG (What You See Is What You Get) software packages
such as Macromedia Dreamweaver or Microsoft FrontPage allow for the automation of some
aspects of CSS creation.

Learning activity: CSS in action
The following extract from a webpage uses CSS for layout, font, and colours. The HTML
document is reproduced below, with the different sections divided up and labeled.

My Page

Welcome to my web page

It is styled using CSS

Hope you like it

 56

Examine the following HTML document and try to establish where the CSS information is located, what
effect it has and how it links to the HTML. Try to notice the patterns in the syntax and punctuation of the
CSS. When you have studied the document, refer to the explanations of the different sections of the
document beneath.

You can also use this activity to check your knowledge of the structure of HTML documents and tags, by
identifying the function of all the different tags, before checking the explanations.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>CSS in action</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<style type="text/css">
body {
color: #003;
background-color: #ff9;
}
h1 {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 120%;
font-weight: bold;
color: #006;
}
p {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 90%;
}
.red {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 90%;
color: #f00;
font-style: italic;
}
</style>
</head>
<body>
<h1>My Page</h1>
<p>Welcome to my web page</p>
<p class="red">It is styled using CSS</p>
<p style="text-align: center; color: #906;"> Hope you like it</p>
</body>
</html>

 57

Explanations

Section of code Explanation
<!DOCTYPE HTML PUBLIC "-
//W3C//DTD HTML 4.01
Transitional//EN">

The DOCTYPE (document type) definition, known as a DTD. This declares
what type of page it is and what language is being used, and it allows the
page to be validated as conforming to Worldwide Web Consortium (W3C)
standards.

<html> The 'open HTML' tag. Tells the browser that what follows is an HTML
document.

<head> The 'open head' tag. The head contains information which is basically not
intended for display. It is loaded into the browser before the body section.
CSS rules are placed between these tags.

<title>CSS in action</title> The title. This states what the title of the page is, allows the title to be
displayed at the top of the browser window, and provides a title that can be
saved to a user's favourites list.

<meta http-equiv="Content-
Type" content="text/html;
charset=iso-8859-1">

Meta command. These commands provide extra information about the
pages. This meta command describes the type of content and which set of
characters is in use.

<style type="text/css"> The 'open style' tag. The style rules must be placed within style tags or in a
separate file linked to the document.

body {
color: #003;
background-color: #ff9;
}

Style rule that applies the following style to all the tags in the body of the
HTML page(s) linked to the Style Sheet:
Dark blue text colour
Light yellow background colour
[NB. The full hexadecimal code for these colours are #000033 (dark blue)
and #ffff99 (light yellow), but these shortened (#003 and #ff9) codes can be
used in Style Sheets].

h1 {
font-family: Verdana, Arial,
Helvetica, sans-serif;
font-size: 120%;
font-weight: bold;
color: #006;
}

Style rule that applies the following style to all the <h1></h1> tags
contained in the HTML page(s) linked to the Style Sheet:
They are displayed in the first font in the font-family
list that is available on the user's computer;
The text is sized at 120% of the default size, in bold
and in a blue colour.

p {
font-family: Verdana, Arial,
Helvetica, sans-serif;
font-size: 90%;
}

Style rule that applies the following style to all the <p></p> tags contained
in the HTML page(s) linked to the Style Sheet:
They are displayed in the first font in the font-family
list that is available on the user's computer;
The text is sized at 90% of the default size.

.red {
font-family: Verdana, Arial,
Helvetica, sans-serif;
font-size: 90%;
color: #f00;
font-style: italic;
}

A style 'class' that is not tied to a particular HTML element. This style rule
can be applied to any tag contained in the HTML page(s) linked to the Style
Sheet. The style is applied to the tag in an HTML document by labeling it with
the name 'red' , e.g.

<h3 class="red">A red heading</h3>

</style> The 'close style' tag. The style rules must be placed within style tags or in a
separate file linked to the document.

</head> The 'close head' tag. The head contains information which is basically not
intended for display. It is loaded into the browser before the body section.
CSS rules are placed between these tags.

<body> The 'open body' tag. The body of an HTML document contains the main
display content. It is here that text, images, links, form elements, tables and
lists are placed.

<h1>My Page</h1> An <h1></h1> heading. This takes the style set in the h1 style rule above.
<p>Welcome to my web
page</p>

A paragraph. This takes the style set in the p style rule above.

<p class="red">It is styled
using CSS</p>

A paragraph with the style specified in the style class '.red' above.

<p style="text-align:
center; color: #906;"> Hope
you like it</p>

A paragraph with the style specified 'inline'. This takes the style set in the p
style rule above, and alters or adds the style set in the line. Thus the font
family and size set in the p style rule above apply to this paragraph and
further styles are also added (centred text and a purple colour). Where the
styles are in conflict, the inline style overrules the style set in the style tags.

</body> The 'close body' tag. The body of an HTML document contains the main
display content. It is here that text, images, links, form elements, tables and
lists are placed.

</html> The 'close HTML' tag. Required to end an HTML document.

 58

Linking CSS to HTML documents
As shown in the activity above, Style Sheets consist of a set of rules which provide
information on how particular elements on a page should be displayed. The style information
can be linked to the HTML document using the following three methods:

1. Embedded CSS

The style rules are placed in the document head between the following tags:

<style type="text/css">

and

</style>

2. External CSS

The rules are placed in a separate text file (without style tags) which is saved with a .css
extension. The file can then be linked to the HTML document by placing the following in the
head of the document:

<link href="filename.css" rel="stylesheet" type="text/css">

It is also possible to link to the CSS file by importing the file when the page loads, using the
following syntax:

<style type="text/css"><!--
@import url("mystyle.css");
--></style>

Because older browsers do not recognise the @import syntax, it is common to use both
methods together to link to different CSS files depending on what kind of browser is being
used. If a Style Sheet designed for older browsers is placed in an href link, followed by an
@import link, modern browsers will override the first Style Sheet with the second, while older
browsers will use the first and ignore the second.

3. Inline CSS

Style information is added to an HTML tag in a similar way to that in which a range of
attributes and values can be added (see the HTML section). e.g.

<p style="font-weight: bold; color: #009"; text-align: center;>
Text styled with inline CSS</p>

produces:

Text styled with inline CSS

The term 'Cascading Style Sheets' derives from the fact that the Style Sheet information from
all three methods can work together with the information from the latter overriding the
information from the former in a 'cascade' (See 'the cascade' section below).

It is worth noting that the latest standards of XHTML recommend using external CSS only
rather than using inline or embedded styles. This is because external Style Sheets allow the
maximum separation of content from presentation, so that all content information is

 59

effectively placed in one file and all presentation placed in another. This makes it easier for
users to display only the content or to apply their own Style Sheet.

Style Sheet syntax
The rules that Style Sheets are made up of consist of the following elements:

Selectors - A references to which elements on the HTML page the style should be applied to,
or to the name of a style 'class' which can be applied to any tag (see the 'creating CSS classes'
section below.

Declarations - A series of statements about what the style should be. These are made up of
properties and values.

The syntax is as follows:

selector {

property 1: value(s);
property 2: value(s);

}

e.g.

p {

font-family: Verdana, Arial, Helvetica, sans-serif;
color: #006;

}

applies a style to all the <p></p> tags contained in the HTML page(s) linked to the Style
Sheet. They are displayed in the first font in the font-family list that is available on the user's
computer, and in a blue colour.

The same syntax can be added inline to a tag in an HTML document by replacing the curly
brackets with 'style=' and quotation marks as follows:

<p style="font-family: Verdana, Arial, Helvetica, sans-serif;
color: #006;">Add text here</p>

Punctuation and spacing

A CSS rule must be accurately punctuated to allow the browser to recognise and distinguish
between different selectors, declarations, properties and values.

The use of punctuation in a CSS rule

It is common to space Style Sheet rules as shown above with each declaration on a new line
and indented from the selector. This is done for clarity to make reading and editing Style

 60

Sheets easier, but it is not obligatory and has no effect on how the browser interprets the
information.

Creating CSS Classes
Different styles can be added to HTML elements through the use of classes. This is done by
adding an extension to the selectors in the Style Sheet, placing the extension name after the
HTML element name and a full-stop. The styles can then be applied by referring to the
extension in the HTML document.

e.g. Two different paragraph styles can be created as follows:

p.bluesans {

font-family: Verdana, Arial, Helvetica, sans-serif;
color: #006;

}

p.redserif {

font-family: Georgia, Times New Roman, Times, serif;
color: #f00;

}

The styles can then be applied to different paragraphs in the HTML document, as follows:

<p class="bluesans">This is a paragraph with the "bluesans" style
applied.</p>

<p class="redserif">This is a paragraph with the "redserif"
style</p>

which produces the following:

This is a paragraph with the "bluesans" style applied.

This is a paragraph with the "redserif" style applied.

Classes can also be created without attachment to a particular HTML element. The procedure
is the same as above, but instead of adding an extension to an HTML element, it is created
independently. To do this, a full-stop is added before the class name as follows:

.bluesans {

font-family: Verdana, Arial, Helvetica, sans-serif;
color: #006;

}

.redserif {

font-family: Georgia, Times New Roman, Times, serif;
color: #f00;

}

 61

The styles can then be applied to different elements in the HTML document, as follows:

<h2 class="redserif">This is a header (<h1>) with the "redserif"
style applied.</h2>

<p class="bluesans">This is a paragraph with the "bluesans" style
applied.</p>

<h4 class="bluesans">This is a header (<h2>) with the "bluesans"
style applied.</h4>

<p class="redserif">This is a paragraph with the "redserif" style
applied.</p>

which produces the following:

This is a header (<h2>) with the
"redserif" style applied.
This is a paragraph with the "bluesans" style applied.

This is a header (<h3>) with the "bluesans" style
applied.
This is a paragraph with the "redserif" style applied.

The styles will be applied to the elements and will override any conflicting colour and font
styles that are already applied to them. Any styles that do not conflict will also be maintained
through the 'cascade' (see section below).

Classes with <div> and tags
<div></div> tags can be used in the HTML document to create a 'division' in the page in
which all elements will have a particular style attached.

e.g.

Style Sheet:

.rightbold {

text-align: right;
font-weight: bold;

}

.centeritalic {

text-align: right;
font-style: italic;

}

.bluesans {

 62

font-family: Verdana, Arial, Helvetica, sans-serif;
color: #006;

}

.redserif {

font-family: Georgia, Times New Roman, Times, serif;
color: #f00;

}

HTML Document:

<div class="rightbold">

<h2 class="redserif">This is a header (<h1>) with the "redserif"
style applied.</h2>

<p class="bluesans">This is a paragraph with the "bluesans" style
applied.</p>

<p>in both cases, the "rightbold" style is applied.</p>

</div>

<div class="centeritalic">

<h4 class="bluesans">This is a header (<h2>) with the "bluesans"
style applied.</h4>

<p class="redserif">This is a paragraph with the "redserif" style
applied.</p>

<p>The "centeritalic" style is applied in both cases.</p>

</div>

The styles linked to the <div></div> tags (shown next to the arrows) are applied to all
the tags within, as follows:

This is a header (<h2>) with the
"redserif" style applied.

This is a paragraph with the "bluesans" style applied.

In both cases, the "rightbold" style is applied.

This is a header (<h3>) with the "bluesans" style
applied.

This is a paragraph with the "redserif" style applied.

 63

The "centeritalic" style is applied in both cases.

 tags are used in a very similar way and also apply style to a section of a
document. However, while <div> tags are always followed by a line-break, tags are
not.

 tags can thus be used to apply different styles to text within sentences and
paragraphs.

e.g.

<p>Using tags it is possible to apply the <span
class="bluesans">"bluesans" style and the <span
class="redserif">"redserif" style in the same line.</p>

produces:

Using tags it is possible to apply the "bluesans" style and the "redserif" style in the
same line.

Replacing the tags with <div> tags produces the following:

Using tags it is possible to apply the

"bluesans" style
and the
"redserif" style
in the same line.

The cascade
Cascading Style Sheets are particularly useful in that they allow a set of generic styles to be
applied to elements of an entire site. Changes can be made across the whole site simply by
making one change to an external Style Sheet which all the pages are linked to.

e.g. If the following rule is included in an external Style Sheet linked to all the pages of a site

h2 {

font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 140%;
color: #006;
background-color: #ff9;
font-weight: bold;
text-align: center;

}

all the <h2></h2> headings will appear as follows:

Example header

However, where the designer wishes to add particular styles to individual pages or sections, or
to make a generically-styled element on a particular page look different, s/he can take
advantage of the 'cascade' which allows Style Sheet information from different sources to work
together.

 64

Where one change is required on a particular page, this can most easily be achieved by adding
an inline style rule.

e.g. Adding the following syntax maintains the information from the generic Style Sheet, but
replaces conflicting rules (concerning colour) with the inline style.

<h2 style="color: #303;">Example header</h2>

Thus a purple text colour is applied as follows:

Example header

Where a change is needed a number of times, an embedded style rule can be added, or a
second external Style Sheet can be included.

Thus, adding the following in the head of the document maintains the external style
information with the exception of the conflicting style rules (background colour and alignment):

<style type="text/css">

h2 {

background-color: #ff0;
text-align: left;

}

</style>

and all <h2></h2> headers on the page will appear with a left alignment and a bright yellow
background, as follows:

Example header

The effect would be the same if this information were added to a second external Style Sheet
with a link placed after the first in the head of the document. The information in the second
will work together with that in the first, overriding any rules that refer to the same properties,
but preserving any other rules.

The browser will apply any inline styles, before applying embedded styles and finally applying
external styles. Where there is style information from different sources that conflicts with each
other, this is the order of precedence. Inline styles will overrule embedded styles which will
overrule external styles. Styles from any source that do not conflict will be preserved.

Thus if the following inline style is added to a heading on a page with the style information
above :

<h2 style="color: #303; text-align: right;">Example header</h2>

the following heading results:

Example header

The information from the three sources 'cascades' as follows:

 65

The combination of styles working together in a 'cascade'

Inheritance
HTML documents can be thought of as having a family tree structure where different elements
are the parent or child of other elements. Thus for example, the <body> element is the
parent of all other tags, and the list item tags () are the children of the list tags
(or).

Most of the styles that are applied to the parent element will be inherited by the child element.
This means that if a particular rule has been applied to the parent, it is not necessary to apply
it again to the child element.

e.g.

In the following Style Sheet, the font-family information can be placed in the body selector,
removing the need to repeat it in the other tags. The inheritance of the colour and font-family
information is overridden in the 'h1' and '.red' selectors by specifying an alternative colour
and family.

 66

<style type="text/css">

body {

color: #003;
background-color: #ff9;

}

p {

font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 90%;

}

h1 {

font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 120%;
color: #006;
font-weight: bold;

}

.red {

font-family: Georgia, Times New Roman, Times, serif;
font-size: 90%;
color: #f00;

}

Thus, the following Style Sheet produces exactly the same results.

<style type="text/css">

body {

color: #003;
background-color: #ff9;
font-family: Verdana, Arial, Helvetica, sans-serif;

}

p {

font-size: 90%;

}

h1 {

font-size: 120%;
color: #006;
font-weight: bold;

 67

}

.red {

font-family: Georgia, Times New Roman, Times, serif;
font-size: 90%;
color: #f00;

}

Careful use of inheritance can provide a means of making CSS information smaller and more
efficient.

Resources for further development
Once you have an understanding CSS, one of the most important resources for use when
working with Style Sheets is a reference to the properties and possible values that can be
applied to different elements of an HTML page. A clear example is provided at
http://www.w3schools.com/ css/css_reference.asp, which offers further information on the
use of different properties.

W3schools also provides tutorials, examples and quizzes at http://www.w3schools.com
/css/default.asp

The Worldwide Web Consortium (W3C)'s CSS page at http://www.w3.org/Style/CSS/ offers a
wealth of information, and provides an opportunity to validate your CSS at
http://jigsaw.w3.org/ css-validator/. This makes it possible to check that your CSS meets web
standards and guidelines by entering a link to your CSS file, uploading your file from your
computer, or pasting your CSS into a text box on the page.

A useful article by John Gallant and Holly Bergevin on using CSS 'short hand' properties to
reduce the size of CSS files and increase efficiency is also available at
http://www.communitymx.com/ content/article.cfm?cid=90F55

 68

Web forms

Introduction
Web forms are at the heart of online questionnaires which basically consist of text (with any
associated multimedia) and form elements inserted into a web page. Forms make it possible
for participants to enter information and send this information to the researcher for analysis.

This page will provide the knowledge required to produce a web form. It will introduce the
different form elements available and cover the different options for how these elements
function and appear.

Learning activity: web forms

Examine the action of the different form elements in the following form. Then complete the tasks that
follow.

1. What is your name?

2. How old are you?

years

3. How often do you use the internet?

everyday

2-3 days per week

4-5 days per week

6-7 days per week

less than once a week

4. Which of the following do you regularly use the internet for?
(You can select as many options as you like. If you would like to remove a selection you have
made, select it again to deselect it).

E mail

Finding information about things to buy

Making purchases

Entertainment

Finding general information

Educational courses

Downloading music

 69

Discussion boards

Real-time chat

5. How would you rate your skill as an internet user?

Select an option

6. What, in your opinion, are the three main advantages of the internet?

Task 1: The basics

A. Check your knowledge of the names of different form elements by matching the names (1-5) to the
examples (a-e) below. Then select 'Answers' to check.

Form elements

1. Text box

2. Textarea

3. Select box

4. Check boxes

5. Radio buttons

Examples

a.

Select an option

b.

E mail

Finding information about things to buy

Making purchases

c.

 70

d.

e.

everyday

2-3 days per week

4-5 days per week

Answers

1=c
2=d
3=a
4=b
5=e

B. Consider the following questions about the web form, before reading the answers.

1. What is the difference between the action of radio buttons and check boxes? Which have
the same actions as the select box?

2. Are there any maximums to the length of the text that can be entered into the text boxes
and textarea? What happens when the text reaches the end of the boxes?

Answers

1. The radio buttons work together as a group. It is only possible to activate one option at a
time. However, multiple Check box options can be chosen simultaneously.

The radio buttons are closest to the select box in that only one option can be chosen. It is,
however, possible to set a select box so that multiple selections can be chosen by holding
down the control button (see section below).

2. The second text box has been set with a maximum character length of 3 characters. If no
maximum character length is set (as is the case with the first text box), text can be entered
beyond the width of the box. Maximum character lengths can also be set for textareas. If no
maximum is set, the scroll bar is automatically activated once the end of the box is reached.

 71

Task 2: Examining the HTML

Examine the HTML underlying the web form and consider how it is rendered in the browser. Try to
establish what the functions of the different parts of the HTML are. When you have studied the document,
refer to the explanations of the different sections of the document beneath.

You can also use this activity to check your knowledge of the structure of HTML documents and tags, by
identifying the function of all the different tags, before checking the explanations.

<form name="form1" action="" method="post">
<p> 1. What is your name?</p>
<p><input type="text" name="namebox" /></p>
<p>2. How old are you?</p>
<p><input name="agebox" type="text" size="5" maxlength="3" />
years</p>
<p>3. How often do you use the internet? </p>
<p><input type="radio" value="Everyday" name="often" />
Everyday

<input type="radio" value="2-3 days" name="often" />
2-3 days per week

<input type="radio" value="4-5 days" name="often" />
4-5 days per week</p>
<p>4. Which of the following do you regularly use the internet
for?

(You can select as many options as you like. If you would like to
remove a selection you have made, click on it again to deselect
it).</p>
<p><input type="Check box" value="Email" name="email" />E mail

<input type="Check box" value="Finding info" name="FI" />Finding
information about things to buy

<input type="Check box" value="Purchases" name="purchases"
/>Making purchases</p>
<p>5. How would you rate your skill as an internet user?</p>
<p><select name="levelSelect">
<option selected="selected">Select an option</option>
<option>-------------------</option>
<option value="VA">Very advanced</option>
<option value="A">Advanced</option>
</select></p>
<p>6. What, in your opinion, are the three main advantages of the
internet?</p>
<textarea name="advantages" rows="5" cols="50"></textarea>
<p><input type="button" name="Submit" value="Submit"
onclick="openResponse();"></p>
</form>

 72

Explanations

Section of code Explanation
<form name="form1" action=""
method="post">

Tag to open the form, which is given a unique name to
enable any scripts to refer to the form(s) in a page, and the
elements within. The action and method attributes control
how and where the information is sent when the form is
submitted (see section below).

<p><input type="text" name="namebox"
/></p>

Text for question 1 within paragraph tags. See 'Ensuring web
forms are accessible' below for information on using labels
for form elements

<p><input type="text" name="namebox"
/></p>

Input tag which places a text box (type="text") on the
page of the default size and without a maximum number of
characters. The name allows the box and its contents to be
accessed by any scripts to validate or process the form.

<p>2. How old are you?</p> Text for question 2 within paragraph tags.
<p><input name="agebox" type="text"
size="5" maxlength="3" /> years</p>

Input tag for a text box (type="text") with a 5-character
width and the maximum number of characters set to 3. The
close tag (' />') ensures that the input tag meets the latest
standards of XHTML which state that all tags should be
closed.

<p>3. How often do you use the
internet?</p>

Text for question 3 within paragraph tags.

<p><input type="radio" value="Everyday"
name="often" /> Everyday

<input type="radio" value="2-3 days"
name="often" />
2-3 days per week

<input type="radio" value="4-5 days"
name="often" />
4-5 days per week</p>

Input tags for three radio buttons (type="radio"). The
fact that they are given the same name (name="often")
means that they operate as a group whereby only one option
can be selected at any one time. This name means that
scripts can access the tags to check which of the buttons
with the same name has been selected. The value of the
selected button can then be extracted.

<p>4. Which of the following do you
regularly use the internet for?

(You can select as many options as you
like. If you would like to remove a
selection you have made, click on it
again to deselect it).</p>

Text for question 4 within paragraph tags.

<p><input type="Check box"
value="Email" name="email" />E mail

<input type="Check box" value="Finding
info" name="FI" />Finding information
about things to buy

<input type="Check box"
value="Purchases" name="purchases"
/>Making purchases</p>

Input tags for three Check boxes (type="Check box").
The names act as a reference to each Check box and mean
that scripts can access them to check whether they have
been checked. The values of any checked boxes can then be
extracted.

<p>5. How would you rate your skill as
an internet user?</p>

Text for question 5 within paragraph tags.

<p><select name="levelSelect">
<option selected="selected">Select an
option</option>
<option>-------------------</option>
<option value="VA">Very
advanced</option>
<option value="A">Advanced</option>
</select></p>

Select tags which create a select box with a unique name to
allow it to be referenced. Each choice is placed within
<option></option> tags which are given a value so that
the value of the selected option can be extracted. The first
two options are not intended to be selected - the first acts as
an instruction and the second separates this from the
genuine options. Inserting 'selected' after the first option
means that this option is selected by default and appears in
the select box when the form is loaded.

<p>6. What, in your opinion, are the
three main advantages of the
internet?</p>

Text for question 6 within paragraph tags.

<textarea name="advantages" rows="5"
cols="50"></textarea>

Textarea tags which create a text input area, given a unique
name with the 'name' attribute. The 'rows' attribute specifies
the number of lines in the box, and 'cols' specifies its width.

<p><input type="button" name="Submit"
value="Submit"
onclick="openResponse();"></p>

Input tag for a button (type="button"), which has no
default action and which must be associated with a script to
have an effect. It is used with this form because it is
processed using a piece of JavaScript code connected to the
'onclick' attribute (activated when the user clicks on the

 73

button). The value attribute sets the text on the button. For
most forms, a submit button can be used
(type="submit") which inserts a button with a default
action of processing the form by sending the information to
the place and in the manner specified by the form tag.

</form> The 'close form' tag which ends the form.

The form tags
Form tags mark off the beginning and end of a form. Controls within the form tags are
effectively grouped together so that when a submit button is clicked the data in all the controls
within the form is sent for processing. It is possible to include multiple forms on a page, but
only one form can be submitted at any one time.

A typical form tag is as follows:

<form name="form1" action="sendForm.php" method="post">

ADD FORM CONTROLS HERE...

</form>

The 'name' attribute allows the form to be given a unique name. This is essential in allowing
the information from the form to be referenced by scripts so that the contents can be accessed
and manipulated.

The 'action' attribute specifies where the information should be posted to when the 'submit'
button is pressed. In the example above, the contents are posted to a page called
sendForm.php, where it will be processed by a php script (for example, by being sent via email
or sorted and transferred to a database).

The 'method' attribute specifies how the information in the form should be sent. The two
values are 'post' or 'get'. The difference is that in the case of the 'post' method, the
information is sent separately, while the 'get' method attaches the information to the end of
the URL of the page that will process the information. An example of the 'get' method from a
search engine in which the user has searched for the keywords 'JavaScript' and 'validation'
and selected options to see pages only in English and from the UK, might be:

http://www.searchengine.com?keywords=JavaScript+validation&lang=En&src=UK

where '?' separates the URL from the data, '=' separates variable names from the data, and
'&' separates different items of data.

Though the 'get' method can be useful in allowing the form data to be bookmarked along with
the URL (allowing a search to be bookmarked), in the majority of cases, the 'post' option will
be used as this can deal with larger amounts of data and does not reveal the data in the
location bar of the browser.

Form controls for input
The majority of form controls that allow the user to input information are created using the
input tag, with the type attribute specifying what type of control appears on the screen. Like
an image tag, the input tag does not have a 'close' tag, and in order for it to meet the latest
standards of XHTML, the close tag '/' must be included at the end. An example of an input tag
for a text box is:

<input type="text" name="text box1" />

 74

The form controls that are not created using the input tag are textarea and select box controls.
These are displayed through <textarea></textarea> and <select></select> tags
respectively.

Each control can be given attributes and values to control aspects such as width and length,
and whether or not the control is filled in or selected by default.

As with any other HTML element, the appearance of forms and form controls can also be
customised using Cascading Style Sheets (see the 'Introduction to CSS' section of this guide
for more information).

The following table provides an example of how to insert the different types of control into a
web page and outlines the different attributes and values that can be applied to each:

Name / Example Example HTML
Comments / Possible
attributes and values

Text box

<input type="text" name="text
box1" size="15" maxlength="20"
/>

This produces a single-line
text input box with a width of
15 characters and the name
'text box1', that can hold a
maximum of 20 characters.

It is possible for text to appear
in the box by default by
adding value="x, y or z" to
the tag, e.g.

x, y, or z

Password box

<input name="password1"
type="password" size="15"
maxlength="10" />

This produces a single-line
text input box in which any
characters input will display as
asterisks or discs. (NB. This is
a display feature which does
not add to the security of
information submitted by the
form)

Possible attributes and values
are the same as for text
boxes.

Check box

Yes

No

Maybe

<input type="Check box"
name="c1" value="Yes">
Yes

<input type="Check box"
name="c2" value="No">
No

<input type="Check box"
name="c3" value="Maybe"
checked="checked" />
Maybe

This produces square tags that
display a tick when selected
and can allow multiple
responses.

When the form is submitted
the name and value of any
checked boxes will be
submitted.

Adding the attribute
checked="checked" means
that the box is selected by
default.

Radio button

Yes

No

Maybe

<input type="radio" name="r1"
value="Yes" / > Yes

<input type="radio" name="r1"
value="No" /> No

<input name="r1" type="radio"
value="Maybe" checked="checked"
/>

Circular tags that fill in when
one option is selected.

Where a group of radio
buttons are given the same
name only one of the buttons
can be selected at any one
time.

As with Check boxes, adding
the attribute checked to one
of the buttons means that it is
selected by default when the
page loads.

Text area

<textarea name="textarea1" Works in the same way as the
text box, but produces a multi-

 75

Text can be

cols="10" rows="5">Text can be
added between the
tags</textarea>

line text input box with a width
and height specified by the
cols and rows attributes.

The box can be empty by
default or text can be added
between the tags

Select boxes

Drop-down menu box

Choose an option

<select name="select1"> <option
selected="selected">Choose an
option</option> <option>-------
</option> <option>Option
1</option> <option>Option
2</option> <option>Option
3</option>
</select>

An element which allows users
to select options by clicking.
One option is displayed at a
time, and only one can be
selected.

In a similar way to Check
boxes and radio buttons,
adding the attribute
selected="selected" to one
of the options means that it is
selected by default. It is a
good idea to make the
selected option an instruction
to avoid measurement error if
an option selected by default
is submitted.

Select boxes

List box

Choose an option

Option 1
Option 2
Option 3

(size="5")

Choose an option
(size="1")

<select name="select2" size="5"
multiple="multiple">
<option
selected="selected">Choose an
option</option>
<option selected="selected">---
----</option> <option>Option
1</option> <option>Option
2</option> <option>Option
3</option>
</select>

List boxes are produced using
the same tags as drop-down
menu boxes, but the attribute
size="x" is added where x is
the number of options visible
at any one time.

Adding the attribute
multiple=multiple to the tag
allows more than one option to
be selected if the user holds
down the control key whilst
making selections (instruction
on how to do this may be
required or it may be
preferable to use Check boxes
which have a similar function).

Adding the attribute
selected=selected to one or
more of the options means
that it is selected by default.

Hidden form fields
Hidden form elements are form controls that are not displayed on the page (though they are
visible in the HTML source for the page). They are useful for storing and passing information
from page to page which is not necessary or desirable to display. They can be thought of as
text boxes with content that can be set by the developer via HTML or JavaScript rather than
being completed by the user. The basic syntax for creating hidden form fields is as follows:

<input type="hidden" name="hidden1" value="value set via HTML or
JavaScript" />

The name attribute allows the field to be referenced by scripts so that the information (set
using the value attribute) can be written to or collected from the field when needed.

Examples of uses of the hidden form control include the following:

Collecting information from questionnaires that span multiple pages so that the
information from earlier pages can be passed to later pages without it being repeatedly

 76

displayed on every page. Upon submission of the questionnaire on the final page, the data
from a form on this page can be combined with one or more hidden elements containing the
data from forms on previous pages. The data from multiple pages and forms can thus be
submitted simultaneously. (There may be cases where it is desirable to submit information
from each page separately to, for example, identify any key drop-out points).

Passing extra information about the submission alongside the data from the
questionnaire. This may include information such as date and time of submission,
approximate time taken to complete the questionnaire or individual questions, the page which
contained the link the participant followed to reach the questionnaire, and information about
the computer used by the participant such as the IP address or the browser used. These can
provide possible routes to identifying and removing anomalous submissions (e.g. extremely
rapid completion or multiple submissions) alongside providing information about the success of
the forms of advertising used to elicit participation.

Passing information collected solely to enhance the effectiveness of data collection,
management or processing. Examples may include the addition of a standard 'from' and
'subject' line to be added to emails containing data from particular questionnaires to facilitate
automatic management of email, or, where appropriate, the inclusion of information about the
version of a questionnaire completed.

See the 'Gathering information about participants' section of this guide for further
information about the use of hidden fields.

Buttons
Buttons must be added as the final component of a working web form. It is through selecting
these buttons that the participant is able to submit or reset a form, or perform some other
action programmed by the developer.

The three standard types of button are illustrated in the following table:

Name /
Example

Example HTML Comments / Possible attributes and values

Submit button

Submit form

<input type="submit"
name="Submit1" value="Submit
form" />

The submit button automatically processes the
information in a form by sending it to the place and in
the manner specified by the form tag.

The text on a button can be changed by altering the
value attribute.

Reset button

Reset form

<input type="reset"
name="reset1" value="Reset
form" />

The reset button automatically returns all the form
elements within the same form as the button to their
default state as per when the document was opened.
Use of a reset button must be carefully considered with
longer forms in particular, as participants who
accidentally press the reset button

As before the text on the button can be changed by
altering the value attribute.

Standard
button

<input type="button"
name="buttton1"
value="Perform an action"
onclick="perfActn(); />

This type of button has no default action and it must be
associated with a script to have an effect. The script will
usually be linked to an 'onclick' event which will carry
out the action set by the script when the button is
pressed.

The example shown would cause a JavaScript function
called 'perfActn' to be activated when the button is
clicked (this may, for example, be written to check that
all required fields are completed before sending the
information to the server (see the 'Form validation'
section of this guide for further information).

 77

Using tables to organise controls into grids
The following example shows how groups of radio buttons can be organised into grids for
Likert scales or semantic differential questions:

Complete the following statement by choosing the number that most closely matches your
opinion for each row:

The internet is:

 1 2 3 4 5

boring

interesting

difficult

easy

risky

safe

useless

useful

The radio buttons in each row are grouped by giving them the same name, so that only one
option can be selected for each row. The buttons in each group are then given a different
value so that when the form is submitted, the names are sent along with the value of the
selected button (or no value if none are selected). This works in exactly the same way as four
unrelated groups of radio buttons in four separate questions.

The table is then styled using HTML or CSS (See 'Introduction to HTML' / 'Introduction to CSS'
sections of this technical guide).

Ensuring web forms are accessible
It is important to ensure that a questionnaire is fully accessible to users of non-graphical
browsers or users who are not using a mouse or other click-and-point device. To do this, all
form elements should be clearly labelled.

This is done using the <label></label> tags as follows:

<p><label>1. What is your name?</label></p>
<p><input type="text" name="namebox" /></p>

It is also important to make an explicit connection between the label and the control using the
for attribute. This tells the user exactly which control the label refers to as follows:

<p><label for="name">1. What is your name?</label></p>
<p><input type="text" id="name" name="namebox" /></p>

The text box is given an identifying attribute id="name" which the label's for attribute
explicitly refers to (label for="name"). This ensures that there will be no confusion in the
use of the form for those using non-graphical browsers.

 78

A second attribute which can be used to improve the accessibility of a questionnaire for those
using a keyboard or equivalent is the tabindex. The tab key (or equivalent in, for example,
voice activated browsers) can be used to select each element in a form in turn. The
tabindex explicitly determines the order in which the elements are selected when the user
tabs through them, as follows:

<input tabindex="2" type="text" name="box1">
<input tabindex="1" type="text" name="box2">
<input tabindex="3" type="submit" name="submit">

In this example, the second text box is selected first when the user presses the tab key.
Pressing the key again selects the first box, and pressing it for the third time selects the
submit button.

Introduction to JavaScript

Introduction
The use of JavaScript (or other scripting languages such as VB Script) can add a number of
enhancements to an online questionnaire. These include:

1. Checking whether or not all questions have been answered correctly and
prompting participants accordingly.

2. Playing a part in effective questionnaire design, for example, by allowing
instructions to be delivered when needed in pop-up windows or alert boxes and
allowing the use of browser detection to test which browser a user has and
whether or not he or she has certain technology installed.

3. Improving the delivery of questions, for example by allowing data to be passed
from page to page rather than being delivered on one long document, or by
allowing randomisation.

4. Allowing the collection of data such as date and time of submission, and
information about the computer used by the participant such as the IP address or
the browser used.

The pages which follow this one provide an outline of some of these uses of JavaScript and
offer a number of scripts which can be used or adapted. Beyond this website, there are also a
number of sites offering freely-available scripts for direct use or adaptation. In order to take
advantage of these resources, an understanding of the basics of JavaScript is generally
required.

This section will introduce you to the basic concepts by examining two simple HTML documents
with JavaScript functionalities. JavaScript will be the scripting language used throughout,
though the procedures and scripts will be similar for other languages.

Accessibility
It is important to bear in mind that JavaScript may reduce the accessibility of the
questionnaire. Users of text-only or screen-reading browsers are likely to be unable to access
any functionality provided by JavaScript, and it is also possible that JavaScript may not be
fully supported in the user's browser or that he or she may have chosen to deactivate it.

Thus, while it can be used to enhance the functionality of the questionnaire, it is not good
practice to produce a questionnaire that is not usable without JavaScript. Where any key

 79

functions are reliant on JavaScript (e.g. where the navigation and question delivery is
controlled by JavaScript) it is important to inform the user of this and to offer alternatives.

The <noscript></noscript> tags can be used to deliver a message to users who are
using a browser that does not support JavaScript. Anything placed between the tags will be
displayed in cases where JavaScript is not available.

e.g.

<noscript>This questionnaire requires the use of JavaScript to
function properly and it is not available in your browser. If you
have disabled JavaScript in your browser settings, please enable
it and refresh this page. If your browser does not support
JavaScript and you would still like to complete the
questionnaire, please email me for an alternative
version.</noscript>

By placing a the following meta tag in the head of the document between
<script></noscript> tags, it is also possible to redirect the user to a new document. In
this case the redirect occurs immediately (0 seconds) and altpage.htm is the name of the
document the user is redirected to (which is held in the same folder as the original page). In
this way, for example, users without JavaScript can be taken to a version of the questionnaire
that does not require it, or to further instructions and contact details.

<meta http-equiv="refresh" content="0;url=/altpage.htm">

For accessibility, it is also important that JavaScript actions are not dependent on mouse
actions such as dragging or double clicking. Where this the case, keyboard-accessible
alternatives should also be provided. See 'Event handlers' section below.

Example 1: A welcome message
In the following example, the contents of a text box are inserted into an alert box when the
user clicks on the button.

What is your name?

Reset

If this were the entire page, the HTML and JavaScript would be as follows:

<html>
<head>
<title>Hello</title>
<link href="mainstyle.css" rel="stylesheet" type="text/css">
<script language="javascript" type="text/javascript">
function showAlert() {
alert("Hello " + document.egForm1.namebox.value + ".");
}
</script>
</head>
<body>
<div class="ques">
<form name="egForm1" action="" method="post">
<p>What is your name?</p>

 80

<p><input type="text" name="namebox" />
<input type="button" name="submit1" value="Submit"
onclick="showAlert();">
<input type="reset" name="reset1" value="Reset" /></p>
</form></div>
</body>
</html>

The majority of the document is HTML with some JavaScript added. Before considering the
JavaScript, check your understanding of the HTML sections and, if necessary, read the brief
explanation that follows.

Explanation

The HTML document has a head section that includes a title and a link to a Cascading Style
Sheet called "mainstyle.css". The body contains a form which is styled using <div
class></div> tags. These apply a style called "ques" which is defined in the Style Sheet
to everything between the tags. The form contains three input elements - a text box called
"namebox", a button called "submit" with "Submit" as the text (the value), and a reset button
called "reset" with "Reset" as the value.

JavaScript within the HTML document structure
The main script is placed in the head of the document, between script tags as follows:

<script language="javascript" type="text/javascript">

and

</script>

It could also have been saved in a separate text file with the extension '.js'. This would be
linked to the web page through a link placed in the head:

<script language="javascript" src="filename.js"
type="text/javascript"></script>

Functions
The action of the script takes place within a function called showAlert which is surrounded
by curly brackets ({}).

function showAlert() {
alert("Hello " + document.egForm1.namebox.value + ".");
}

In this case, an alert box is shown with the contents of the text box incorporated into a
message. The function can be explained as follows:

The value of the box is extracted and placed between two strings (text variables), namely
"Hello " and "." (The quotation marks identify them as strings). The alert function is
then triggered which places everything within the brackets in an alert box. The semi-colon (;)
is placed at the end of each line of the function.

 81

As in this example, a function is a block of code that carries out a particular action. In effect
the code is not carried out until the function is 'called' from within the document when a
particular event occurs (such as the user clicking a submit button).

The basic structure of a function is as follows:

functionName(){

Add function here...

}

The brackets following the function name allow different arguments to be included when it is
called by different elements.

In the case of the example, this is not done - the code will always display the same message
and the contents of the same text box when the function is called. However, the inclusion of
arguments allows functions to be created which can be reused at different times by different
elements in the document. In this case, a message and a reference to a particular text box
name could be added when the function is called to allow it to display different messages
along with the contents of different boxes.

They can thus be a very efficient way of carrying out different actions with one block of code
(see 'Using arguments within functions' below).

This function is 'called' by the onclick code placed in the button tag:

<input type="button" name="submit" value="Submit"
onclick="showAlert();">

The onclick code is an example of an 'event handler' which triggers an action when a
particular event occurs. In this case, the showAlert() function happens when the
participant clicks on the button. Other examples of important event handlers are:

Event handler Description
onDblClick Placed in the tag of a button or link, the action happens when the user uses the mouse to

double select the object.

onmouseover /
onmouseout

The action happens when the user places the mouse over a button or link / removes the
mouse from the button or link.

onFocus / onblur Usually placed in the tag of a form control, the action happens when the element receives
focus (the user selects it) / loses focus (the user moves away).

OnChange The action happens when a control loses focus (the user clicks away) and the value has been
changed.

OnSubmit/onReset Placed in the form tag, the action happens when a form is submitted (the user presses the
'submit' button) / reset (the user presses the reset button).

OnLoad / onunload Placed in the body tag of a document, the action occurs when the page loads / unloads.

To ensure the accessibility of a questionnaire, any event handler that is dependent on the use
of a mouse should be avoided. This will allow the JavaScript function to be activated by those
using a keyboard or equivalent such as a voice activated browser. Where event handlers such
as onmouseover or onmouseout are used, they should also be combined with onfocus
or onblur events which will trigger the action when a user tabs to a button or similar
element. For example in the following 'image flip' code, a function to change an image is called
by the onmouseover event handler. The onmouseout handler calls a second function to
change the image back. Adding the onfocus="this.onmouseover();" and the

 82

onblur="this.onmouseout();" code ensures that the same actions will take place
when a user without a mouse tabs to or away from the image.

<img src="picture.gif" alt="picture 1 " name="i1" width="20"
height="20" onmouseover="swapOn();" onmouseout="swapOff();"
onfocus="this.onmouseover();" onblur="this.onmouseout();" />

Accessing data in controls
Elements in a web page are referenced by JavaScript using the 'tree-structure' of the
document to refer to a particular element by name.

The contents of the text box in the example are referenced using the following:

document.egForm1.namebox.value

This refers to the value (the text) of the text box called namebox within the form called
egForm1 within the document.

By giving all the form controls on a page a unique name, it is possible to use this type of
referencing to extract or set their value.

As an alternative to writing out the full reference where there are numerous references to
controls within a form, it is also possible to make use of the 'this' which is used in JavaScript
to allow an object to refer to itself.

If an event handler is in the form tag, 'this' can therefore replace the words
'document.egForm1' in the reference.

If it is in a button within the form, the syntax 'this.form' can be used to refer to the form
(i.e. the form that contains this).

To refer to a text box control called 'box1' from the button within the form,
'this.form.box1' can be used instead of 'document.egForm1.box1'. (i.e. box1 which
is in the form that contains this).

This referencing is illustrated by the following example which is a form called frm1 containing
two text boxes called box1 and box2, and a button called btn1. Code is added to the
onclick event handler of the button which will display the contents of box1 in box2 when the
user presses the button, as follows:

Box 1 Box2

The code is:

<p> Box 1 <input type="text" name="box1" />
<input type="button" name="btn1" value="Go"
onclick="document.frm1.box2.value=document.frm1.box1.value;" />
Box2 <input type="text" name="box2" /></p>

There is no difference if the full reference is replaced with the shortened version using 'this', as
follows:

onclick="this.form.box2.value = this.form.box1.value";>

Although it is not a great deal shorter, using this syntax can make code more flexible and can
avoid errors where the form name is referenced incorrectly (the this.form syntax

 83

automatically feeds in the correct name). If it is used with arguments, it can make it easier to
reuse functions with different forms and controls. (see section below)

Using arguments with functions
The use of arguments can be illustrated by the alert function which is used to display the
name from the text box in example 1.

It is possible to create one function with an argument (given the name 'msg') that will be the
message displayed when the function is called, as follows:

function showMessage(msg) {

alert(msg + ".");

}

A string can be added to an onclick event handler which is then fed into the function when
the function is called. This means that a different message can be displayed each time and it is
not necessary to write a new function for each message.

e.g. All the buttons and links in the following paragraph use this same function to display a
different message:

The following link is to message 2. It is an example of how a link can trigger an event in the
same way as a button, using an 'empty' link to the JavaScript function as follows: .

The code in the HTML document which calls the function is as follows:

<p><input type="button" name="btn2" value="Message 1"
onclick="showMessage('This is message 1');" />

The following link is to <a href="JavaScript:void(0);"
onclick="showMessage('This is message 2');">message
2. It is an example of how a link can trigger an event in
the same way as a button, using an 'empty' link to the JavaScript
function as follows: .

<input type="button" name="btn3" value="Message 3"
onclick="showMessage('This is message 3');" />

If the same concept is applied to example 1 (which displayed a welcome message
incorporating the user's name taken from a text box), it is possible to feed in the text box
name as a second argument. The name is then passed to the function along with the message,
allowing it to be reused within or between documents.

The original function is:

function showAlert() {
alert("Hello " + document.egForm1.namebox.value + ".");
}

It is altered by adding argument names between the brackets, and replacing the message and
text box reference with these name as follows

function showAlert(msg, box) {

 84

alert(msg + " " + box.value + ".");
}

This tells the function to expect the relevant information to be fed in when the function is
called.

e.g.

<input type="button" name="submit1" value="Submit"
onclick="showAlert('Hello there', this.form.box1);">

The first argument is a string which is fed into the function as msg. It is placed within single
quotation marks rather than double as double quotation marks would interfere with the tag. A
comma then follows to separate the arguments.

The second argument uses the 'this' shorthand to tell the function to take and display the
contents from the text box called 'box1' within the same form as the button that was clicked
(this.form).

It can thus be called from different boxes in the document and deliver a different message
accordingly:

The code in the HTML document is as follows:

<form name="egForm2" action="" method="post">
<div class="ques">
<p>What is your name?</p>
<p><input type="text" name="box1" />
<input type="button" name="Submit" value="Submit"
onclick="showAlert('Hello there', this.form.box1);"></p>
<p>What is your full name?</p>
<p><input type="reset" name="reset" value="Reset" />/>
<input type="text" name="box2" />
<input type="button" name="Submit2" value="Submit"
onclick="showAlert('or perhaps I should call you',
this.form.box2);">
<input type="reset" name="reset2" value="Reset" /></p>
</div>
</form>

By placing the script in a file linked to a number of documents, it can also be used across an
entire site.

Although this is not very useful for a welcome message script, applying the use of arguments
and reusable functions to common tasks such as form validation can be a very efficient way of
carrying them out.

 85

Example 2: Simple validation
This example checks that a value has been entered in the text box, preventing submission
until this is the case. If a value has been entered a welcome message is displayed.

If this were the entire page, the HTML and JavaScript would be as follows:

<html>
<head>
<link href="../generic/main.css" rel="stylesheet"
type="text/css">
<title>Simple validation</title>
<script language="javascript" type="text/javascript">
function validateForm(form) {
if (form.namebox.value ==""){
alert("please enter your name.");
form.namebox.focus();
return false;
}
else {
alert("Welcome " + form.namebox.value + ".");
return true;
}
}
</script>
</head>
<body>
<div class="ques">
<form name="egForm2" action="" method="post" onSubmit=" return
validateForm(this);">
<p>What is your name?</p>
<p> <input type="text" name="namebox" />
<input type="submit" name="submit" value="Submit" />
<input type="reset" name="reset" value="Reset" /></p>
</form></div>
</body>
</html>

The HTML sections of the document are almost the same as those in example 1. Again, there
is a head section that includes a title and a link to a Cascading Style Sheet called
"mainstyle.css". The body contains a form which is styled using <div class></div>
tags. These apply a style called "ques" which is defined in the Style Sheet to everything
between the tags. The form contains three input elements - a text box called "namebox", a
button called "submit" with "Submit" as the text (the value), and a reset button called "reset"
with "Reset" as the value.

The function that carries out the action is called validateForm(). It is placed between
<script></script> tags and is called by the onSubmit event handler when the
participant submits the form. The onSubmit handler is specifically designed for form
validation. It is followed by the key word return which means that the results of the

 86

validateForm() function will be returned to the piece of code. These results must be
either 'true' (the submission proceeds), or 'false' (the submission is blocked).

The onSubmit handler includes an argument which is the reference to the form (this). This
feeds the full reference to the form name (document.egForm2) into the function when it is
triggered. The function then checks whether the box is empty, and displays an alert message
accordingly. It also returns the required 'true' or 'false' value that will allow or block the
submit action. Details about the conditional section of the function (if/else) are given
below.

Conditionals
Conditionals are integral to validation and, indeed, to programming of all kinds. They allow the
code to test whether or not certain conditions have been met and to perform different actions
accordingly.

The basic structure of conditionals in JavaScript is as follows:

if(Condition A){

Perform an action;

}

else if(condition B){

Perform an alternative action;

}

else {

Perform an alternative action in any other situation;

}

Like functions, the actions that take place if a condition is met are placed within curly brackets
'{}'.

The conditions that the code tests for are placed within brackets '()'.

The function in the example 'validateForm()' basically consists of a conditional to test
whether the text box is empty.

if (form.namebox.value =="")

The '==' symbol is an operator meaning 'is equal to', so the conditional tests whether the
value is equal to an empty string ("").

If this is the case, the following three actions are carried out:

{
alert("please enter your name.");
form.namebox.focus();
return false;
}

1. An alert box delivers a 'please enter your name' message.

 87

2. The text box is given the focus through the 'focus()' method (i.e. the curser
is placed inside the text box ready for it to be filled in).

3. 'False' is returned to the onSubmit attribute in the form tag preventing the
form submission from proceeding.

If it is not the case, the action is not carried out and the code moves on to the 'else'
statement which performs the following actions if the value is equal to anything else except for
an empty string(""):

else {
alert("Welcome " + form.namebox.value + ".");
return true;
}

1. An alert box delivers a welcome message consisting of 'Welcome ' and the
contents of the text box.

2. 'True' is returned to the onSubmit attribute in the form tag allowing the form
submission to proceed.

The else statement does not test for specific conditions, but provides a means of carrying out
an action if any other condition is met but those specified.

In this case, it could be replaced with an 'else if' statement to test whether the box is not
empty:

else if (form.namebox.value !="")

The '!=' symbol is an operator meaning 'is not equal to', so the conditional tests whether the
value is not equal to an empty string (""). Other common operators used in conditionals are
as follows:

Operator Meaning
x > y x is greater than y
x < y x is less than y
x >= y x is greater than or equal to y
x <= y x is less than or equal to y

Multiple conditions can also be tested for using the following operators:

Operator Meaning
condition 1 && condition 2 condition 1 and condition 2
condition 1 || condition 2 condition 1 or condition 2

Thus the following conditional would display an alert box message and prevent submission of
the form if a text box called 'agebox' for a question about age is left blank or does not
contain a number.

if (form.agebox.value =="" || isNaN(form.agebox.value) == true){

alert("Please enter your age as a number.");
return false;

}

isNaN(), tests to see whether a value in the brackets is Not a Number. The condition will
be true if letters or any other characters are contained in the box.

 88

Form validation

Introduction
Using JavaScript, it is possible to check that data is in a suitable format, that any required
questions have been answered, and that no questions or selections have been accidentally
missed prior to submission. This page will provide an overview of the procedure for adding
validation to check the data from common form elements. It is recommended that you review
the 'Introduction to JavaScript' page and the section on 'simple validation' in particular before
working through this page.

When deciding whether or not to add validation to a questionnaire, it is important to consider
the effects it may have. Care must be taken when requiring answers to questions that
participants may not wish to answer, as this is likely to lead to drop out. Requiring answers
should generally only be considered where it is essential to the success of the questionnaire.

Rather than preventing submission of a questionnaire with incomplete answers, it may be
appropriate to prompt the participant to check unanswered fields, giving the option of
proceeding with the submission or going back to check. This may increase responses and is
certainly more likely to deal with accidental omissions without leading to problems of requiring
responses.

Client-side scripting via JavaScript has a great advantages over server-side processing when
performing validation as it allows an instant response to any problems with the form
submission. It is not necessary for the form information to be submitted to the server and
then sent back; the processes happen on the user's computer.

However, It is also important to bear in mind that JavaScript may reduce the accessibility of
the questionnaire. Users of text-only or screen-reading browsers are likely to be unable to
access any functionality provided by JavaScript, and it is also possible that it may not be fully
supported in the user's browser or that he or she may have chosen to deactivate it. For this
reason, it is important to ensure that the use of the questionnaire does not depend on
JavaScript, and to 'back up' any validation via JavaScript with server-side validation once the
form is submitted. This is likely to enhance the security as well as the accessibility of the
questionnaire. For more information, see the 'accessibility' and 'server-side validation' sections
below.

Example of 'once-only' text box validation
The following is an example of a web form with simple validation applied to a text box. It
prevents submission of the form unless 'M,' 'm,' 'F' or 'f' is entered for the question.

It is designed to allow submission the second time the submit button is pressed regardless of
whether or not the question has been answered appropriately.

What is your gender (M or F)?

The HTML and JavaScript behind the form is as follows:

 89

The body

<body>

<form name="genderCheck" action="" method="post" onSubmit="return
checkForm(this);">

<p>What is your gender (M or F)?</p>
<p><input type="text" name="genderbox" size="1" maxlength="1"
/></p>

<p><input type="submit" name="Submit" value="Submit" /></p>

</form>

</body>

Learning activity

Check your understanding of how the form triggers and responds to the validation routines by answering
the following questions and referring to the suggested answers below.

Review 'Simple validation' in the 'Introduction to JavaScript' section if necessary.

1. When is the validation triggered?

2. What is the name of the function that performs the validation?

3. Two valid values can be returned to the form tag following validation routines. What are
these values and what effect do they have?

Suggested answers

1. The validation is triggered when the user submits the form using the onSubmit event
handler.

2. The function that performs the validation is called checkForm and it feeds the name and
reference to the form into the function through the syntax (this).

3. The two valid values that can be returned from the validation routine are true and false.
If true is returned by the function the submission proceeds. If false is returned it is halted.

The validation script

The script makes use of a variable (initially set to 'false') which is used to check whether or
not the user has attempted to submit the form previously (it is changed to 'true' on the first
submission).

If this is the case (or if the form has been completed correctly the first time the submission is
attempted) the submission is allowed to proceed ('true' is returned to the form).

Otherwise, the submission is blocked ('false' is returned to the form) and the variable is
changed to 'true' to allow it to proceed next time.

The script is shown below with comments explaining each section of code.

It is common to add these comments to JavaScript code to provide an explanation of how it
works. They are ignored by the browser, but can be viewed in the source code of the HTML

 90

document or the JavaScript file. Comments in JavaScript should be prefixed by two forward-
slashes (//) to ensure that the browser ignores them.

Check your understanding of the code by reading the comments. Review the 'Introduction to JavaScript'
section if necessary.

<script language="javascript" type="text/javascript">

// Set variable for whether submit has been pressed (Placed
outside the function so that its value will not be set to false
every time the function is called, but will be 'remembered'

var submitPressed = false;

// start function and tell it to expect the name and reference to
the form to be passed into it (to replace the word 'form') when
the function is called

function checkForm(form) {

// Check the submission - If the question has been answered
correctly (the box contains 'm', 'M', 'f', or 'F') or if the user
has already tried to submit once before (genderSubmitPressed is
'true'), provide the user with a thank-you alert and return
'true' to the form to allow submission to proceed.

if (submitPressed == true || form.genderbox.value =="m" ||
form.genderbox.value =="M" || form.genderbox.value =="f" ||
form.genderbox.value =="F") {
alert("Thank you for completing the form.");
return true;
}

// In any other situation, deliver an alert box message to the
user reminding them to answer the question. Change the
submitPressed variable to 'true' to allow submission to proceed
next time and return 'false' to the form to prevent submission
this time.

else {
alert("Please insert your gender which is needed for analysis
purposes and which will not compromise the anonymity of your
data. If you would rather not provide this information, press the
submit button again to proceed.");
submitPressed = true;
return false;
}

// end function

}
</script>

In a situation where the researcher wishes to require an answer to the question and not allow
submission at the second attempt, this could easily be done by removing the three references

 91

to the 'submitPressed' variable in the code (var submitPressed = false;,
submitPressed == true ||, and submitPressed = true;).

Radio buttons
It is also possible to check that one of a group of radio buttons has been checked as in the
following form.

How often do you use the internet?

everyday

2-3 days per week

4-5 days per week

6-7 days per week

less than once a week

This is made possible by the fact that all of the radio buttons have the same name and are
thus automatically included in an array. This means that each of the buttons is given a number
starting with zero. These numbers can be used to refer to each Check box using the following
syntax:

form.often[x]

where x is the number of the button and where form is replaced by the name and reference
to the form (e.g. window.document.formname) which is passed into the function when it
is called.

The HTML for the radio buttons is as follows:

<input type="radio" name="often" value="everyday" />
everyday

<input type="radio" name="often" value="2-3 days per week" />
2-3 days per week

<input type="radio" name="often" value="4-5 days per week" />
4-5 days per week

<input type="radio" name="often" value="6-7 days per week" />
6-7 days per week

<input type="radio" name="often" value="less than once a week" />
less than once a week </p>

The reference to the first button is:

form.often[0]

while the reference to the last (the fifth) is:

form.often[4]

Each radio button has a property checked which has a value true or false. This can be
used to ascertain whether it has been selected (checked is true) or has not been selected
(checked is false).

 92

The section of the validation script that checks whether one of the buttons has been selected
is as follows:

if (form.often[0].checked == true || form.often[1].checked ==
true || form.often[2].checked == true || form.often[3].checked ==
true || form.often[4].checked == true){

alert("Thank you for completing the form.");
return true;

}

This displays the thank-you message and returns true to the form to allow submission to
proceed in the following circumstances:

circumstances code
button 1 has been selected: form.often[0].checked == true
or: ||
button 2 has been selected: form.often[1].checked == true
or: ||
button 3 has been selected: form.often[2].checked == true
or: ||
button 4 has been selected: form.often[3].checked == true
or: ||
button 5 has been selected: form.often[4].checked == true

This can be simplified by looping through each of the boxes to check whether or not they have
been selected, as follows:

for (var i = 0; i<form.often.length; i++){

if (form.often[i].checked == true){
questionAnswered = true;
}

}

if (questionAnswered == true){

alert("Thank you for completing the form.");
return true;

}

This begins a loop which feeds the value of i into the conditional (if
(form.often[i].checked == true))

The initial value of i is set to 0 (var i = 0;) and it is set to increase by one at the end of
each loop (i++) until i is no longer less than the length of the array of Check boxes called
often (i<form.often.length;) which in this case is five (there are five boxes).

This means that the conditional (if (form.often[i].checked == true)) is carried
out five times with i replaced with 0, 1, 2, 3, and 4.

In each case, if the button has been selected, a variable questionAnswered is set to
true.

This is followed by another conditional which displays the thank-you message and returns true
to the form if questionAnswered is true.

 93

The complete code is as follows:

<script language="javascript" type="text/javascript">

// Set variable for whether submit has been pressed

var submitPressed = false;

// start function

function checkForm(form) {

// Set variable for whether question has been answered

var questionAnswered = false;

// Check the submission - If any of the buttons have been
selected, change 'questionAnswered' variable to 'true'.

for (var i = 0; i<form.often.length; i++){

if (form.often[i].checked == true){
questionAnswered = true;
}

}

// If 'submitPressed' is 'true' (the submit button has already
been pressed) or 'questionAnswered' is 'true' (an option has been
selected), provide the user with a thank-you alert and return
'true' to the form to allow submission to proceed. .

if (submitPressed == true || questionAnswered == true){
alert("Thank you for completing the form.");
return true;

}

// In any other situation, deliver an alert box message to the
user reminding them to answer the question. Change the
submitPressed variable to 'true' to allow submission to proceed
next time and return 'false' to the form to prevent submission
this time.

else {

alert("Please select an answer. If you would rather not provide
this information, press the submit button again to proceed.");
submitPressed = true;
return false;

}

// end function

}
</script>

 94

Check boxes
Like radio buttons, a group of check boxes can be given the same name. In this case, they can
be validated in the same way as radio buttons using the array which automatically numbers
the boxes.

Which of the following do you regularly use the internet for?

E mail

Finding information about things to buy

Making purchases

Entertainment

Finding general information

Educational courses

Downloading music

Discussion boards

Real-time chat

The HTML for the Check boxes is as follows:

<p>Which of the following do you regularly use the internet
for?</p>
<p>
<input type="Check box" name="uses" value="email" />
E mail

<input type="Check box" name="uses" value="finding information
about things to buy" />
Finding information about things to buy

<input type="Check box" name="uses" value="making purchases" />
Making purchases

<input type="Check box" name="uses" value="entertainment" />
Entertainment

<input type="Check box" name="uses" value="finding general
information" />
Finding general information

<input type="Check box" name="uses" value="educational courses"
/>
Educational courses

<input type="Check box" name="uses" value="downloading music" />
Downloading music

<input type="Check box" name="uses" value="discussion boards" />
Discussion boards

<input type="Check box" name="uses" value="real-time chat" />
Real-time chat</p>
<p>

The Check boxes are given the same name (uses), but different values. When the form is
submitted, the value of any checked box can be added to a variable. Each of the different

 95

values is added separated by a comma. Thus, for example, if the first three Check boxes are
selected, the variable will be :

"email, finding information about things to buy, making
purchases"

The code for checking that an option has been selected is exactly the same as that for the
radio buttons, except that the name given to the Check boxes is added to the loop and
conditionals, as follows:

for (var i = 0; i<form.uses.length; i++){

if (form.uses[i].checked == true){
questionAnswered = true;
}

}

This is a key advantage of using the loop to check each of the radio buttons or check boxes
rather than including a conditional for every button or box. The same piece of code can be
used for each group regardless of the number of boxes, with the only necessary modification
being the name.

Select boxes
Select boxes can be validated in a similar way to radio buttons and Check boxes, as the
options in a box are also counted in an array.

How would you rate your skill as an internet user?

Select an option

The HTML for the select box is as follows:

<p>How would you rate your skill as an internet user?</p>
<p>
<select name="skill">
<option value="not answered">Select an option</option>
<option value="not answered">-------------------</option>
<option value="very advanced">Very advanced</option>
<option value="advanced">Advanced</option>
<option value="average">Average</option>
<option value="basic">Basic</option>
<option value="very basic">Very basic</option>
</select>
</p>
<p>

It is given the name skill and each option is given an appropriate value. The options are
counted in an array as follows:

form.skill.options[x]

where x is the number of the option (starting from 0) and where form is replaced by the
name and reference to the form (e.g. window.document.formname) which is passed into
the function when it is called.

 96

Thus, the reference to the first option (labeled 'Select an option' and given the value
'not answered') is:

form.skill.options[0]

while the reference to the last (the seventh, labeled 'Very basic' and given the value
'very basic') is:

form.skill.options[6]

The first option provides the instruction to the user (Select an option), and the second
acts as a divider between this and the options proper(-------------------). Thus, it
can be assumed that if either of these options is selected, the question has not been answered.

It is therefore possible to check that a valid option has been selected through the following
code:

// Check the submission - If both the first and second options
have not been selected, provide the user with a thank-you alert
and return 'true' to the form to allow submission to proceed.

if (form.skill.options[0].selected != true &&
form.skill.options[1].selected != true) {

alert("Thank you for completing the form.");
return true;

}

Validating multiple form elements
As with the previous examples, the following questionnaire prevents the first submission of the
form unless all the questions have been answered and allows submission the second time the
submit button is pressed regardless of whether or not all the questions have been answered
appropriately.

In this case, however, there is more than one form element, so it is helpful to inform the user
of which question(s) need attention. This is done through delivery of an alert-box message
when a problem is found.

1. What is your name?

2. How often do you use the internet?

everyday

2-3 days per week

4-5 days per week

6-7 days per week

less than once a week

This is done through the use of extra variables which are set to record which questions have
not been answered and to add the question numbers to the alert box message.

 97

The code for this is shown in the following learning activity.

Learning activity

This activity will allow you to check your understanding of how the code works, by matching the
comments to the sections of code that they describe. It will also act as a review of once-only validation of
textboxes and radio buttons.

Match the pieces of code (A-H) to the comments that describe them (1-8).

Code

<script language="javascript" type="text/javascript">

A
var submitPressed = false;
var q1Answered = false;
var q2Answered = false;
var alertMessage = "";

// start function

function checkForm(form) {

B

else{

q1Answered = true;

}

C

for (var i = 0; i<form.often.length; i++){

if (form.often[i].checked == true){
q2Answered = true;
}

}

D

if (q2Answered == false){

alertMessage = alertMessage + "2 ";

}

E

if (submitPressed == true || (q1Answered == true && q2Answered ==
true)){

 98

alert("Thank you for completing the form.");
return true;

}

F

else {

alert("Please check your answers to the following
question(s):\n\r" + alertMessage + "\n\rIf you are happy with
them, press the submit button again to proceed with the
submission.");

}

G

submitPressed = true;
return false;
}

// end function

}
</script>

Comments

1. // Check question 1 - If the box is empty, the question has not been answered.
In this case, add the question number to the message that will be delivered to
the user to indicate that there are problems with certain questions.

2. // If both questions have been answered (q1Answered and q2Answered are
both true) or if the user has already tried to submit once before (submitPressed
is true), provide the user with a thank-you alert and return 'true' to the form to
allow submission to proceed.

3. // If either or both of the questions has not been answered, deliver an alert box
message to the user and include the variable 'alertMessage' which was used to
collect the numbers of the unanswered questions.

4. // Change the submitPressed variable to true to allow submission to proceed
next time and return 'false' to the form to prevent submission this time.

5. // If 'q2Answered' is still false, the question has not been answered, so add the
question number to the message.

6. // If the box is not empty, the question has been answered, so the
'q1Answered' variable is changed to 'true'.

7. // Check question 2 - If any of the buttons have been selected, change
'q2Answered' variable to 'true'.

8. // Set variables
// Variable for whether submit has been pressed
// Variable for whether each question has been answered
// Variable for the final alert box message.

 99

Answers

A=8
B=1
C=6
D=7
E=5
F=2
G=3
H=4

Complete code:

<script language="javascript" type="text/javascript">

// Set variables
// Variable for whether submit has been pressed
// Variable for whether each question has been answered
// Variable for the final alert box message.

var submitPressed = false;
var q1Answered = false;
var q2Answered = false;
var alertMessage = "";

// start function

function checkForm(form) {

// Check question 1 - If the box is empty, the question has not
been answered. In this case, add the question number to the
message that will be delivered to the user to indicate that there
are problems with certain questions.

if (form.namebox.value ==""){

alertMessage = "1 ";

}

// If the box is not empty, the question has been answered, so
the 'q1Answered' variable is changed to 'true'.

else{

q1Answered = true;

}

// Check question 2 - If any of the buttons have been selected,
change 'q2Answered' variable to 'true'.

for (var i = 0; i<form.often.length; i++){

if (form.often[i].checked == true){
q2Answered = true;
}

 100

}

// If 'q2Answered' is still false, the question has not been
answered, so add the question number to the message.

if (q2Answered == false){

alertMessage = alertMessage + "2 ";

}

// If both questions have been answered (q1Answered and
q2Answered are both true) or if the user has already tried to
submit once before (submitPressed is true), provide the user with
a thank-you alert and return 'true' to the form to allow
submission to proceed.

if (submitPressed == true || (q1Answered == true && q2Answered ==
true)){

alert("Thank you for completing the form.");
return true;

}

// If either or both of the questions has not been answered,
deliver an alert box message to the user and include the variable
'alertMessage' which was used to collect the numbers of the
unanswered questions.

else {

alert("Please check your answers to the following
question(s):\n\r" + alertMessage + "\n\rIf you are happy with
them, press the submit button again to proceed with the
submission.");

}

// Change the submitPressed variable to true to allow submission
to proceed next time and return 'false' to the form to prevent
submission this time.

submitPressed = true;
return false;
}

// end function

}
</script>

Summary of the working of the code

The text box and radio button validation routines shown in the sections above are carried out,
but where a question has been answered a variable for that question is set to true rather than
the submission occurring immediately. Where a question has not been answered, the

 101

submission is not immediately blocked, but the number of that question is added to a variable
which is then incorporated into an alert-box message.

Finally, both the question variables are checked and where they are found to be true (i.e. they
have been answered) or where the form has been submitted once before (the form submission
variable is found to be true) a thank-you message is delivered. If any question variable is false,
the alert-box message is delivered and the form submission variable is changed to true.

Putting it all together

This section describes examples of validation of a questionnaire with multiple questions and question
types. The complete code for each method shown can be viewed in the 'Adapting the code' section below.

The following questionnaire about internet use incorporates all of the different validation
elements outlined above:

1. What is your name?

2. How old are you?

years

3. What is your gender (M or F)?

4. How often do you use the internet?

everyday

2-3 days per week

4-5 days per week

6-7 days per week

less than once a week

5. Which of the following do you regularly use the internet for?
(You can select as many options as you like. If you would like to remove a selection you have
made, select it again to deselect it).

E mail

Finding information about things to buy

Making purchases

Entertainment

Finding general information

Educational courses

Downloading music

 102

Discussion boards

Real-time chat

6. How would you rate your skill as an internet user?

Select an option

7. What, in your opinion, are the three main advantages of the internet?

A potential problem with the way the questionnaire is validated is that a single message is
delivered to the user which includes all the questions requiring attention. This is not ideal as
the user is unlikely to be able to remember which questions need to be checked in cases
where there is more than one or two. Two more complex possible alternatives are shown
below.

Alternative 1: One-by-one validation

In this case, each question is checked individually. If a question has not been answered or
previously submitted, an alert message is displayed to the participant, and false is returned to
the form to prevent submission. A variable for that question is also set to true so that
submission will not be blocked if the participant resubmits without answering the question for
a second time.

If the first question has been answered or has been submitted before, the second is checked.
If this has been answered or previously submitted, the third is checked. This continues until all
have been checked and a thank-you message is then delivered.

A potential problem with the way this questionnaire is validated is that it tends to overuse
alert messages. Where a number of questions have not been answered, the participant may
become frustrated by this, which could lead to increased drop-out rates. However, it is no
more difficult to implement and adapt for different questionnaires than the first example.

Alternative 2: Displaying messages within the questionnaire

This alternative is similar to the first example in that all the questions are checked together.
The questionnaire prevents the first submission of the form unless all the questions have been
answered and allows submission the second time the submit button is pressed regardless of
which questions may not have been answered appropriately.

Rather than delivering an alert-box message with the numbers of the questions that have not
been answered correctly, however, a message is revealed next to the questions on the
questionnaire itself.

This probably provides the most effective validation in terms of usability, but there may be
problems for participants using older browsers (with version numbers lower than Netscape
Navigator 5 or Internet Explorer 4) who may not be able to access the messages.

For this reason, an alert box message is included indicating that there is a problem with the
answers. For users with a browser capable of displaying them, this is backed up with the
messages indicating where the problems are. However, those who cannot access these

 103

messages are still informed of the reason for the failed submission, prompted to check their
answers, and given the message that pressing the submit button a second time will allow it to
proceed.

Thus, while the use of the messages adds to the functionality of the questionnaire, it does not
prevent it from being usable for those who are unable to access it (see the 'Accessibility'
section).

The messages are revealed using <div> and tags in the HTML code with CSS and
JavaScript. Implementing and adapting this method of presenting the results of validation is
slightly more involved that the previous examples, but the validation routines are very similar
to those of the first example.

Adapting the code
The complete HTML and JavaScript for each of the three questionnaires shown in this section
can be seen below. The code can be saved, or copied and pasted into your text editor for
adaption and use in questionnaires with different types and numbers of questions. There are
explanatory comments in the code and some general notes on adaptation are as follows:

1. When removing questions, make sure that associated code and variables are
also removed.

2. When adding validation to new questions, be sure to copy in full the associated
code and variables from a question of the same type.

3. When adding form elements for new questions, give them a unique name and
make sure that this is added correctly into the code copied from similar questions.

4. Similarly, make sure that new variable names are unique and added correctly
into all relevant parts of the code.

5. Ensure that you have included the required punctuation, or the code may not
run correctly. For example, make sure that functions are contained within curly
brackets ({}), and that conditionals are within brackets, with actions resulting
from conditionals in curly brackets. See the 'Introduction to JavaScript' section of
this guide for further information if required.

Questionnaire 1: Alert-box message

<html>
<head>
<title>Exploring ORMs | Example of alert-box validation</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<style type="text/css">
body {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 75%;
color: #003;
}
p {
font-size: 100%;
margin: 10px 0px;
}
.form {
background-color: #ffffec;
border: #003 1px solid;

 104

padding: 10px;
}
</style>
<script language="javascript" type="text/javascript">

// Set variables

// Variable for whether submit has been pressed. Delete this if
you prefer to require an answer to the questions and not allow
submission at the second attempt.

var submitPressed = false;

// Variable for each question.

var q1Answered = false;
var q2Answered = false;
var q3Answered = false;
var q4Answered = false;
var q5Answered = false;
var q6Answered = false;
var q7Answered = false;

// Variable for the final alert box message

var alertMessage = "";

// start function

function checkForm(form) {

// Check question 1 - If the box is empty, the question has not
been answered. In this case, add the question number to the
message that will be delivered to the user to indicate that there
are problems with certain questions.

if (form.namebox.value ==""){
alertMessage = "1 ";
}

// If the box is not empty, the question has been answered, so
the 'q1Answered' variable is changed to 'true'.

else{
q1Answered = true;
}

// Check question 2 - If the box is empty or it does not contain
a number, the question has been not been answered. In this case,
add the number to the message.

if (form.agebox.value =="" || isNaN(form.agebox.value) == true){
alertMessage = alertMessage + "2 ";
}

 105

// In any other situation, assume the question has been answered,
so change the 'q2Answered' variable to 'true'.

else{
q2Answered = true;
}

// Check question 3 - If the box does not contain 'm', 'M', 'f',
or 'F', the question has been not been answered correctly. In
this case, add the number to the message.

if (form.genderbox.value !="m" && form.genderbox.value !="M" &&
form.genderbox.value !="f" && form.genderbox.value !="F"){
alertMessage = alertMessage + "3 ";
}

// In any other situation, the question has been answered, so
change the 'q3Answered' variable to 'true'.

else{
q3Answered = true;
}

// Check question 4 - Check each of the radio buttons. If one has
been selected, the question has been answered, so change the
'q4Answered' variable to 'true'.

for (var i = 0; i<form.often.length; i++){
if (form.often[i].checked == true){
q4Answered = true;
}
}

// If the 'q4Answered' variable is still 'false', the question
has not been answered so add the number to the message.

if (q4Answered == false){
alertMessage = alertMessage + "4 ";
}

// Check question 5 - If one of the Check boxes has been
selected, the question has been answered, so change the
'q4Answered' variable to 'true'.

for (var j = 0; j<form.uses.length; j++){
if (form.uses[j].checked == true){
q5Answered = true;
}
}

// If the 'q5Answered' variable is still 'false', the question
has not been answered so add the number to the message.

 106

if (q5Answered == false){
alertMessage = alertMessage + "5 ";
}

// Check question 6 - If one of the first two options has been
selected, the question has not been answered and the number is
added to the message.

if (form.skill.selectedIndex == 0 || form.skill.selectedIndex ==
1){
alertMessage = alertMessage + "6 ";
}

// In any other situation, a valid option has been selected, so
change the 'q6Answered' variable to 'true'.

else{
q6Answered = true;
}

// Check question 7 - If the textarea is empty, the question has
not been answered. In this case, add the question number to the
message.

if (form.advantages.value ==""){
alertMessage = alertMessage + "7 ";
}

// Otherwise, change the 'q7Answered' variable to 'true'.

else{
q7Answered = true;
}

// If all the questions have been answered (q1Answered to
q7Answered are all true) or if the user has already tried to
submit once before (submitPressed is true), provide the user with
a thank-you alert and return 'true' to the form to allow
submission to proceed. Delete '|| submitPressed == true' if you
prefer to require an answer to the questions and not allow
submission at the second attempt.

if (q1Answered == true && q2Answered == true && q3Answered ==
true && q4Answered == true && q5Answered == true && q6Answered ==
true && q7Answered == true || submitPressed == true){
alert("Thank you for completing the form.");
return true;
}

// If some questions have not been answered, deliver an alert box
message to the user and include the variable 'alertMessage' which
was used to collect the numbers of the unanswered questions.
Change the submitPressed variable to 'true' to allow submission
to proceed next time and return 'false' to the form to prevent

 107

submission this time. Delete 'submitPressed = true;' if you
prefer to require an answer to the questions and not allow
submission at the second attempt.

else {
alert("Please check your answers to the following questions:\n\r"
+ alertMessage + "\n\rIf you are happy with them, press the
submit button again to proceed with the submission.");
submitPressed = true;
return false;
}
}

</script>
</head>
<body>
<div class="form">
<form name="exampleform1" action="" method="post"
onSubmit="return checkForm(this);">
<p> 1. What is your name? </p>
<p><input type="text" name="namebox" /></p>
<p>2. How old are you?</p>
<p><input name="agebox" type="text" size="5" maxlength="3" />
years</p>
<p>3. What is your gender (M or F)?</p>
<p><input name="genderbox" type="text" size="1" maxlength="1"
/></p>
<p>4. How often do you use the internet?</p>
<p>
<input type="radio" name="often" value="everyday" /> everyday

<input type="radio" name="often" value="2-3 days per week" /> 2-3
days per week

<input type="radio" name="often" value="4-5 days per week" /> 4-5
days per week

<input type="radio" name="often" value="6-7 days per week" /> 6-7
days per week

<input type="radio" name="often" value="less than once a week" />
less than once a week
</p>
<p>5. Which of the following do you regularly use the internet
for?
(You can select as many options as you like. If you
would like to remove a selection you have made, select it again
to deselect it).</p>
<p>
<input type="Check box" name="uses" value="email" />E mail

<input type="Check box" name="uses" value="finding information
about things to buy" />Finding information about things to buy

<input type="Check box" name="uses" value="making purchases"
/>Making purchases

<input type="Check box" name="uses" value="entertainment"

 108

/>Entertainment

<input type="Check box" name="uses" value="finding general
information" />Finding general information

<input type="Check box" name="uses" value="educational courses"
/>Educational courses

<input type="Check box" name="uses" value="downloading music"
/>Downloading music

<input type="Check box" name="uses" value="discussion boards"
/>Discussion boards

<input type="Check box" name="uses" value="real-time chat" />
Real-time chat</p>
<p>6. How would you rate your skill as an internet user?</p>
<p>
<select name="skill">
<option selected="selected">Select an option</option>
<option>-------------------</option>
<option value="very advanced">Very advanced</option>
<option value="advanced">Advanced</option>
<option value="average">Average</option>
<option value="basic">Basic</option>
<option value="very basic">Very basic</option>
</select>
</p>
<p>7. What, in your opinion, are the three main advantages of the
internet?</p>
<p><textarea name="advantages" rows="5" cols="50"></textarea></p>
<p><input type="submit" name="Submit" value="Submit" /></p>
</form>
</div>
</body>
</html>

Questionnaire 2: One-by-one validation

<html>
<head>
<title>Exploring ORMs | Example of one-by-one validation</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
body {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 75%;
color: #003;
}
p {
font-size: 100%;
margin: 10px 0px;
}
.form {

 109

background-color: #ffffec;
border: #003 1px solid;
padding: 10px;
}
</style>
<script language="javascript" type="text/javascript">

// Set variables for each question. Delete these if you prefer to
require an answer to the questions and not allow submission at
the second attempt.

var q1Answered= false;
var q2Answered= false;
var q3Answered= false;
var q4Answered= false;
var q5Answered= false;
var q6Answered= false;
var q7Answered= false;

// start function

function checkForm(form) {

// Check question 1 - If the 'q1Answered' variable is false,
check the contents of the box. If it is not false, ignore the
check and move onto the validation for question 2. Delete this if
you prefer to require an answer to the questions and not allow
submission at the second attempt. (And do same to the equivalent
line for the other questions)

if (q1Answered==false){

// If the box is empty, the question has not been answered. In
this case, deliver an alert box message and change the
'q1Answered' variable to 'true' so that it will not prevent
submission next time the submit button is pressed. Return 'false'
to the form to prevent submission this time. Delete 'q1Answered=
true;' if you prefer to require an answer to the questions and
not allow submission at the second attempt. (And do same to the
equivalent line for the other questions)

if (form.namebox.value ==""){
alert ("Please complete question 1 or leave it blank and press
the submit button again to proceed with the submission.");
q1Answered= true;
return false;
}
}

// Check question 2 - If the 'q2Answered' variable is false,
check the contents of the box. If it is not false, ignore the
check and move onto the validation for question 3.

if (q2Answered==false){

 110

// If the box is empty or it does not contain a number, the
question has not been answered correctly. In this case, deliver
an alert box message and change the 'q2Answered' variable to
'true' so that it will not prevent submission next time the
submit button is pressed. Return 'false' to the form to prevent
submission this time.

if (form.agebox.value =="" || isNaN(form.agebox.value) == true){
alert ("Please enter your age as a number for question 2 or leave
the box blank and press the submit button again to proceed with
the submission.");
q2Answered = true;
return false;
}
}

// Check question 3 - If the 'q3Answered' variable is false,
check the contents of the box. If it is not false, ignore the
check and move onto the validation for question 4.

if (q3Answered==false){

// If the box does not contain 'M', 'm', 'F' or 'f', the question
has not been answered correctly. In this case, deliver an alert
box message and change the 'q3Answered' variable to 'true' so
that it will not prevent submission next time the submit button
is pressed. Return 'false' to the form to prevent submission this
time.

if (form.genderbox.value !="m" && form.genderbox.value !="M" &&
form.genderbox.value !="f" && form.genderbox.value !="F"){
alert ("Please insert your gender for question 3 or leave the box
blank and press the submit button again to proceed with the
submission.");
q3Answered = true;
return false;
}
}

// Check question 4 - If the 'q4Answered' variable is false,
check the radio buttons. If it is not false, ignore the check and
move onto the validation for question 5.

if (q4Answered==false){

// Set a variable for whether an option has been selected.

var q4Selected = false;

// Check each of the radio buttons. If one has been selected, the
question has been answered, so change the 'q4Selected' variable
to 'true'.

for (var i = 0; i<form.often.length; i++){
if (form.often[i].checked == true){

 111

q4Selected = true;
}
}

// If the 'q4Selected' variable is still 'false', the question
has not been answered, so deliver an alert box message and change
the 'q4Answered' variable to 'true' so that it will not prevent
submission next time the submit button is pressed. Return 'false'
to the form to prevent submission this time.

if (q4Selected == false){
alert ("Please choose an answer for question 4 or press the
submit button again to proceed with the submission.");
q4Answered = true;
return false;
}
}

// Check question 5 - If the 'q5Answered' variable is false,
check the Check boxes. If it is not false, ignore the check and
move onto the validation for question 6.

if (q5Answered==false){

// Set a variable for whether at least one Check box has been
selected.

var q5Checked = false;

// Check each of the Check boxes. If one has been selected, the
question has been answered, so change the 'q5Selected' variable
to 'true'.

for (var j = 0; j<form.uses.length; j++){
if (form.uses[j].checked == true){
q5Checked = true;
}
}

// If the 'q5Checked' variable is still 'false', the question has
not been answered, so deliver an alert box message and change the
'q5Answered' variable to 'true' so that it will not prevent
submission next time the submit button is pressed. Return 'false'
to the form to prevent submission this time.

if (q5Checked == false){
alert ("You have not selected an answer for question 5. Please
check this and press the submit button again to proceed with the
submission.");
q5Answered = true;
return false;
}
}

 112

// Check question 6 - If the 'q6Answered' variable is false,
check the select box. If it is not false, ignore the check and
move onto the validation for question 7.

if (q6Answered==false){

// Check question 6 - If one of the first two options has been
selected, the question has not been answered. In this case,
deliver an alert box message and change the 'q6Answered' variable
to 'true' so that it will not prevent submission next time the
submit button is pressed. Return 'false' to the form to prevent
submission this time.

if (form.skill.selectedIndex == 0 || form.skill.selectedIndex ==
1){
alert ("You have not selected an answer for question 6. Please
check this and press the submit button again to proceed with the
submission.");
q6Answered = true;
return false;
}
}

// Check question 7 - If the 'q7Answered' variable is false,
check the contents of the textarea. If it is not false, ignore
the check and move onto the thank-you message.

if (q7Answered==false){

// If the textarea is empty, the question has not been answered.
In this case, deliver an alert box message and change the
'q7Answered' variable to 'true' so that it will not prevent
submission next time the submit button is pressed. Return 'false'
to the form to prevent submission this time.

if (form.advantages.value ==""){
alert ("Please complete question 7 or leave it blank and press
the submit button again to proceed with the submission.");
q7Answered= true;
return false;
}
}

// If the code makes it to this stage without returning 'false'
to the form, all the questions have been answered correctly or
have been submitted twice. Deliver a thank-you alert message and
return 'true' to the form to allow submission to proceed.

alert("Thank you for completing the form.");
return true;
}
</script>
</head>
<body>

 113

<div class="form">
<form name="exampleform1" action="" method="post"
onSubmit="return checkForm(this);">
<p> 1. What is your name? </p>
<p><input type="text" name="namebox" /></p>
<p>2. How old are you?</p>
<p><input name="agebox" type="text" size="5" maxlength="3" />
years</p>
<p>3. What is your gender (M or F)?</p>
<p><input name="genderbox" type="text" size="1" maxlength="1"
/></p>
<p>4. How often do you use the internet?</p>
<p>
<input type="radio" name="often" value="everyday" /> everyday

<input type="radio" name="often" value="2-3 days per week" /> 2-3
days per week

<input type="radio" name="often" value="4-5 days per week" /> 4-5
days per week

<input type="radio" name="often" value="6-7 days per week" /> 6-7
days per week

<input type="radio" name="often" value="less than once a week" />
less than once a week
</p>
<p>5. Which of the following do you regularly use the internet
for?

(You can select as many options as you like. If you would like to
remove a selection you have made, select it again to deselect
it).</p>
<p>
<input type="Check box" name="uses" value="email" /> E mail

<input type="Check box" name="uses" value="finding information
about things to buy" />Finding information about things to buy

<input type="Check box" name="uses" value="making purchases"
/>Making purchases
<input type="Check box" name="uses"
value="entertainment" />Entertainment

<input type="Check box" name="uses" value="finding general
information" />Finding general information

<input type="Check box" name="uses" value="educational courses"
/>Educational courses

<input type="Check box" name="uses" value="downloading music"
/>Downloading music

<input type="Check box" name="uses" value="discussion boards"
/>Discussion boards

<input type="Check box" name="uses" value="real-time chat"
/>Real-time chat</p>
<p>6. How would you rate your skill as an internet user?</p>
<p>
<select name="skill">
<option selected="selected">Select an option</option>

 114

<option>-------------------</option>
<option value="very advanced">Very advanced</option>
<option value="advanced">Advanced</option>
<option value="average">Average</option>
<option value="basic">Basic</option>
<option value="very basic">Very basic</option>
</select>
</p>
<p>7. What, in your opinion, are the three main advantages of the
internet?</p>
<p><textarea name="advantages" rows="5" cols="50"></textarea></p>
<p><input type="submit" name="Submit" value="Submit" /></p>
</form>
</div>
</body>
</html>

Questionnaire 3: Validation via messages within the questionnaire

<html>
<head>
<title>Exploring ORMs | Example of validation via messages in the
questionnaire</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
body {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 75%;
color: #003;
}
p {
font-size: 100%;
margin: 10px 0px;
}
.form {
background-color: #ffffec;
border: #003 1px solid;
padding: 10px;
}
.response {
font-weight: bold;
color: #f00;
}
</style>
<script language="javascript" type="text/javascript">

// The messages to the participant are delivered by showing or
hiding layers. This is done differently according to the type of

 115

browser the participant is using. This block of code checks the
type of browser

var isIE4 = false;
var isCompliant = false;
if(document.getElementById)
{
if(!document.all)
 {
isCompliant=true;
 }
if(document.all)
 {
isIE4=true;
 }
}

// Code to allow the hidden layers used to deliver the messages
to be made visible. A different method is used according to the
type of browser identified in the previous block of code.

function aLs(layerID)
{
var returnLayer ="null";
if(isIE4)
{
returnLayer = eval("document.all." + layerID + ".style");
}
if(isCompliant)
{
returnLayer = eval("document.getElementById('" + layerID +
"').style");
}
return returnLayer;
}

// Function to make a layer visible when called. The layer name
is fed into the function when it is called.

function showResponse(ID)
{
aLs(ID).display = "";
}

// Function to make a layer invisible when called. The layer name
is fed into the function when it is called.

function hideResponse(ID)
{
aLs(ID).display = "none";
}

// Variable for whether submit has been pressed

 116

var submitPressed = false;

// Variable for each question.

var q1Answered = false;
var q2Answered = false;
var q3Answered = false;
var q4Answered = false;
var q5Answered = false;
var q6Answered = false;
var q7Answered = false;

// start validation function

function checkForm(form) {

// Check each question in turn and change the associated variable
to 'true' if they have been answered. (See comments for the first
example questionnaire and/or the appropriate sections of the
'Form validation' page for explanations if required.

if (form.namebox.value !=""){
q1Answered = true;
}
if (form.agebox.value !="" && isNaN(form.agebox.value) != true){
q2Answered = true;
}
if (form.genderbox.value =="m" || form.genderbox.value =="M" ||
form.genderbox.value =="f" || form.genderbox.value =="F"){
q3Answered = true;
}
for (var i = 0; i<form.often.length; i++){
if (form.often[i].checked == true){
q4Answered = true;
}
}
for (var j = 0; j<form.uses.length; j++){
if (form.uses[j].checked == true){
q5Answered = true;
}
}
if (form.skill.selectedIndex != 0 && form.skill.selectedIndex !=
1){
q6Answered = true;
}
if (form.advantages.value !=""){
q7Answered = true;
}

// If all the questions have been answered (q1Answered to
q7Answered are all true) or if the user has already tried to
submit once before (submitPressed is true), call the
'hideResponse' function for each of the message layers to make

 117

sure that, if they have previously been shown, they are hidden
again. Provide the user with a thank-you alert and return 'true'
to the form to allow submission to proceed.

if (q1Answered == true && q2Answered == true && q3Answered ==
true && q4Answered == true && q5Answered == true && q6Answered ==
true && q7Answered == true || submitPressed == true){
hideResponse('incorrect');
hideResponse('incorrect1');
hideResponse('incorrect2');
hideResponse('incorrect3');
hideResponse('incorrect4');
hideResponse('incorrect5');
hideResponse('incorrect6');
hideResponse('incorrect7');
alert("Thank you for completing the form.");
return true;
}

// If some questions have not been answered, deliver an alert box
message to the user

else {
alert("There appears to be problems with your answers. Please
check and if you are happy with your answers, press the submit
button again to proceed with the submission.");

// Show the layer called 'incorrect' which contains the
instructions to the participant (See HTML body)

showResponse('incorrect');

// Check the first question. If it has not been answered (its
variable is still false), show the layer which shows there is a
problem with that question (called 'incorrect1 - see HTML body)

if (q1Answered == false){
showResponse('incorrect1');
}

// Do the same check for the other questions.

if (q2Answered == false){
showResponse('incorrect2');
}
if (q3Answered == false){
showResponse('incorrect3');
}
if (q4Answered == false){
showResponse('incorrect4');
}
if (q5Answered == false){
showResponse('incorrect5');

 118

}
if (q6Answered == false){
showResponse('incorrect6');
}
if (q7Answered == false){
showResponse('incorrect7');
}

// Change the submitPressed variable to true to allow submission
to proceed next time and return 'false' to the form to prevent
submission this time.

submitPressed = true;
return false;
 }
}
</script>

</head>

<body>
<div class="form">
<form name="exampleform1" action="" method="post"
onSubmit="return checkForm(this);">
<p> 1. What is your name?

<!-- Name of the first layer. The other layers all have a unique
name which can be fed into the 'showResponse()' and
'hideResponse()' functions as arguments placed within the
brackets. -->

<!-- Class to style the text in the layer (Enbolden and change
colour to red (See Style information in head of document) -->

*</p>

<!-- If adding further questions, add similar comments layers
next to each with a unique name. After adding validation for the
question to the JavaScript code, call the 'showResponse()' and
'hideResponse()' functions for this layer as appropriate in the
same way as is done for the 7 layers associated with the current
questions -->

<p><input type="text" name="namebox" /></p>
<p>2. How old are you? <span id="incorrect2"
style="display:none">* Please enter your
age as a number or leave the box blank</p>
<p><input name="agebox" type="text" size="5" maxlength="3" />
years</p>
<p>3. What is your gender (M or F)? <span id="incorrect3"
style="display:none">* Please enter your
gender as 'M', 'm', 'F' or 'f'</p>

 119

<p><input name="genderbox" type="text" size="1" maxlength="1"
/></p>
<p>4. How often do you use the internet? <span id="incorrect4"
style="display:none">*</p>
<p>
<input type="radio" name="often" value="everyday" /> everyday

<input type="radio" name="often" value="2-3 days per week" /> 2-3
days per week

<input type="radio" name="often" value="4-5 days per week" /> 4-5
days per week

<input type="radio" name="often" value="6-7 days per week" /> 6-7
days per week

<input type="radio" name="often" value="less than once a week" />
less than once a week
</p>
<p>5. Which of the following do you regularly use the internet
for?

(You can select as many options as you like. If you would like to
remove a selection you have made, select it again to deselect
it). <span
class="response">*</p>
<p>
<input type="Check box" name="uses" value="email" />E mail

<input type="Check box" name="uses" value="finding information
about things to buy" />Finding information about things to buy

<input type="Check box" name="uses" value="making purchases"
/>Making purchases

<input type="Check box" name="uses" value="entertainment"
/>Entertainment

<input type="Check box" name="uses" value="finding general
information" />Finding general information

<input type="Check box" name="uses" value="educational courses"
/>Educational courses

<input type="Check box" name="uses" value="downloading music"
/>Downloading music

<input type="Check box" name="uses" value="discussion boards"
/>Discussion boards

<input type="Check box" name="uses" value="real-time chat" />
Real-time chat</p>
<p>6. How would you rate your skill as an internet user? <span
id="incorrect6" style="display:none"><span
class="response">*</p>
<p>
<select name="skill">
<option selected="selected">Select an option</option>
<option>-------------------</option>
<option value="very advanced">Very advanced</option>
<option value="advanced">Advanced</option>
<option value="average">Average</option>

 120

<option value="basic">Basic</option>
<option value="very basic">Very basic</option>
</select>
</p>
<p>7. What, in your opinion, are the three main advantages of the
internet?
<span
class="response">*</p>
<p><textarea name="advantages" rows="5" cols="50"></textarea>
</p>
<p><input type="submit" name="Submit" value="Submit" /></p>
<div id="incorrect" style="display:none">
<div class="response">
<p>Please check the answers highlighted with an asterisk (*). If
you are happy with them, press the 'submit' button again to
proceed with the submission.</p>
</div>
</div>
</form>
</div>
</body>
</html>

Validating before submission
The following form applies validation routines before the submit button is pressed. For both
questions, participants are prevented from selecting more than three options, and for question
2, they are also limited to entering '1', '2', or '3' in the text boxes.

1. Choose THREE adjectives that you think best describe successful websites?
If you would like to change a selection you have made, select it again to deselect it.

Easy to use

Attractive

Functional

Fast

Well-known

Colourful

Dynamic

Interactive

Simple

Varied

Up-to-date

2. From the following list of potential disadvantages of the internet, choose the THREE which
you consider to be the most serious.

 121

Then rank them by writing the numbers 1, 2 and 3 in the boxes. 1 = Most serious, 3 = least
serious.

It is expensive

It is too slow

It provides information that is mainly of poor quality

It offers too much information

It wastes too much time

It can expose the user's computer to virus attacks or hacking

There are too many adverts and/or to much junk email

There are often problems with broken links

Three different validation routines are carried out.

The first two routines are carried out independently of the submit button when participants are
completing the questions. The first occurs as the result of an onclick event handler, when
participants select a Check box. The second occurs as a result of an onblur event handler
when participants click away from a text box. (see the 'Event handlers' section of the
'Introduction to JavaScript' for more information if necessary).

This type of validation ensures that problems are dealt with before participants attempt to
submit and also serves to provide on-going instructions to participants attempting to complete
the questions.

Finally, there is a function called by pressing the submit button. This checks that three options
have been selected for the questions and delivers an alert message if this is not the case.

Each of the routines is explained in the following sections:

'onclick' validation

The validation routine for question 1 consists of a function which is called by the onclick
event handler when participants select the Check boxes.

Each of the eleven Check boxes is given the same name (adjectives) which means that
they are automatically added to an array from zero to ten. They are also given appropriate
values so that when the form is submitted the value of checked boxes can be added to the
adjectives variable. The onclick event handler is added to each which calls a function
called count() and returns the result of this function to the Check box. If true is returned,
the Check box is selected, and if false is returned, it is deselected. (This works in a similar
way to returning true or false to a form when it is submitted). Thus, the HTML for the first
and second Check boxes is:

<input type="Check box" name="adjectives" value="easy"
onclick="return count(this.form)" />
Easy to use

<input type="Check box" name="adjectives" value="attractive"
onclick="return count(this.form)" />
Attractive

 122

When participants select a box, the function counts the number of checked boxes, returning
false (deselecting the box) if three boxes have already been selected, and returning true
allowing the box to remain selected) if fewer than three have been selected. The commented
code is as follows:

// start function and tell it to expect the name and reference to
the form to be passed into it (to replace the word 'form') when
the function is called.

function count(form) {

// Set variable called 'number' used to count the number of Check
boxes selected. This is contained within the function, so it is
'local' to the function. Thus, it is 'reset' to 0 each time the
function is called and does not 'remember' between function
calls. A variable with the same name can be included in a
different function without interfering with this one.

var number = 0;

// Start a loop to check each of the boxes. For each box, check
if it is selected, and if so, add 1 to the 'number' variable.

for (i = 0; i < form.adjectives.length; i++) {

 if (form.adjectives[i].checked == true){
 number = number+1;

 }

}

// Check the 'number' variable. If it is less than 4, return
'true' so that it stays checked.

if (number < 4) {

 return true;
 }

// If it equals 4 (the Check box clicked would be the fourth to
be selected), return 'false' so that it is deselected.

else if (number ==4) {

 return false;
 }

}

'onblur' validation

The routine for question 2 consists of a function called check2() which is called by the
onblur event handler when participants click away from a text box. The counting of the text
boxes that have been filled in occurs in a similar way to the routine in question 1.

However, the text boxes cannot be given the same name, as it would not be possible to
distinguish which ones have been chosen. Thus they cannot be counted in an array. Instead of

 123

this, it is possible to use the form.elements array to count the boxes. This is an array of
all the form elements in a form. The first to appear is given the number zero
(form.elements[0]) and the second is given the number one (form.elements[1]).
This continues for all the elements in the form.

By counting how many elements come before the first text box in question 2, and counting
how many text boxes there are, we can find the number of the boxes in this
form.elements array and use this information in the validation routine. There are 11
Check boxes in question 1 (form.elements[0]) to (form.elements[10]) and there
are 8 textboxes in question 2. Thus the first textbox in question 2 is the 12th in the
form.elements array (form.elements[11]) and the last is the 20th
(form.elements[19]).

This means that the routine needs to check the 12th to the 20th elements and count the ones
that have been filled, preventing more than three from being filled. This is similar to the code
in the routine for question 1. However, the number of the box in the element.array must be
fed into the function as an argument so that the box that called the function can be identified.

Thus, there are two arguments in the function (the form reference and the number of the box
in the array), and the HTML for the first two boxes is as follows:

<p> It is expensive
<input type="text" maxlength="1" size="1" name="expensive"
onblur="count2(this.form, 11)" />

It is too slow
<input onblur="count2(this.form, 12)" type="text" maxlength="1"
size="1" name="slow" />

and the function is begun and ended as follows:

function count2(form, box) {

}

The section of the function that counts the boxes is as follows:

// Set variable called 'number' used to count the number of
textboxes filled.

var number = 0;

// Start a loop to check each of the boxes. For each box, check
if it is filled (its value is not an empty string(""), and if so,
add 1 to the 'number' variable.

for (i = 11; i < 19; i++) {

 if (form.elements[i].value !=""){
 number = number+1;

// Check the 'number' variable. If it is has reached 4 (this is
the fourth box to be filled), delete the contents of the last box
to be filled in (by changing the value of the box which called
the function to "") and provide an alert message.

 if (number == 4){

 124

 form.elements[box].value ="";
 alert("Please select three options only. Delete one of your
 selections if you would like to change it.");
 }

 }

}

// NB. It is important to check that all curly brackets that have
been opened are closed correctly, or the script will not run
correctly.

This provides the facility of limiting the number of responses to three, but it does not limit
what the contents of the boxes can be.

To do this, it is necessary to check that only the numbers 1, 2 and 3 have been entered in the
boxes, and to ensure that these numbers have been entered only once.

Three variables are set to count the number of times that 1, 2 and 3 have been entered and if
a box that calls the function is found to contain a number for the second time, the contents
are deleted and a message delivered to the participant. This also occurs if any other content is
inserted into the box.

The commented code for this section of the function is as follows:

// Set variables called 'onePicked', 'onePicked', and 'onePicked'
used to count the number of occurrences of 1, 2 and 3.

var onePicked = 0;
var twoPicked = 0;
var threePicked = 0;

// Start a loop to check each of the boxes.

for (j = 11; j < 19; j++) {

// For each box, check if the value is "1", and if so, add 1 to
the 'onePicked' variable. If it has reached 2 ('onePicked is
greater than 1), delete the contents of the last box to be filled
in (by changing the value of the box which called the function to
"") and provide an alert message.

if (form.elements[j].value =="1") {

 onePicked = onePicked +1;
 if (onePicked >1){
 form.elements[box].value ="";
 alert("Please select rank 1 for one option only");
 }

}

// Do the same for value "2".

else if (form.elements[j].value =="2") {

 125

 twoPicked = twoPicked +1;
 if (twoPicked >1){
 form.elements[box].value ="";
 alert("Please select rank 2 for one option only");
 }

}

// And for value "3".

else if (form.elements[j].value =="3") {

 threePicked = threePicked +1;
 if (threePicked >1){
 form.elements[box].value ="";
 alert("Please select rank 3 for one option only");
 }

}

// Finally check that no other value has been added to the boxes,
by checking for boxes that are not empty (and do not contain "1",
"2" or "3". If any other value is found, delete the contents of
the box, and give focus to it (place the cursor in the box) ready
for the participant to add a different value.

else if (form.elements[j].value !=""){

 alert("Please enter a number from 1-3");
 form.elements[box].value ="";
 form.elements[box].focus();
 }

}

'onSubmit' validation

This is the most straightforward of the functions, because the more involved validation
activities have been carried out beforehand. All that has to be done is to check that three
options have been chosen for each question. If this is the case, it can be assumed that the
validation from the other functions has already ensured the correct number and format of
responses has been provided.

The commented code is as follows:

function checkForm(form) {

// Set variable used to count the number of Check boxes selected
for question 1.

var number = 0;

// Start a loop to check each of the boxes in question 1. For
each box, check if it is checked, and if so, add 1 to the
variable.

for (i = 0; i < form.adjectives.length; i++) {

 126

 if (form.adjectives[i].checked == true){
 number = number+1;

 }

}

// At the end of the loop, check how many boxes have been
selected. If it is not three, deliver an alert message and return
'false' to the form to prevent submission.

if (number != 3) {

 alert("Please select three options for question 1.");
 return false;

}

// Set variable used to count the number of text boxes filled in
for question 2.

var number2 = 0;

// Start a loop to check each of the boxes in question 2. For
each box, check if it is filled (it's value is not an empty
string ""), and if so, add 1 to the variable.

for (j = 11; j < 19; j++) {

 if (form.elements[j].value !="") {
 number2 = number2+1;

 }

}

// At the end of the loop, check how many boxes have been filled.
If it is not three, deliver an alert message and return 'false'
to the form to prevent submission.

if (number2 != 3) {

alert("Please select your three options for question 2.");
return false;

}

// If the code makes it to this stage without returning 'false'
to the form, the correct number of responses have been made.
Deliver a thank-you alert message and return 'true' to the form
to allow submission to proceed.

alert("Thank you for completing the form.");
return true;

}

The complete HTML and code is as follows:

 127

<html>
<head>
<title>Exploring ORMs | Example of validating multiple form
elements</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
@import url(../generic/main.css);
</style>
<script language="javascript" type="text/javascript">

function count(form) {

var number = 0

for (i = 0; i < form.adjectives.length; i++) {
 if (form.adjectives[i].checked == true){
 number = number + 1
 }
}

 if (number < 4) {
 return true;
 }

 else if (number == 4) {
 return false;
 }
}

function count2(form, box) {

var onePicked = 0;
var twoPicked = 0;
var threePicked = 0;
var number = 0;

for (i = 11; i < 19; i++) {
if (form.elements[i].value !=""){
 number = number + 1;
 if (number == 4){
 form.elements[box].value ="";
 alert("Please select three options only. Delete one of your
 selections if you would like to change it.");
 }
 }
}

for (j = 11; j < 19; j++) {
 if (form.elements[j].value =="1") {
 onePicked = onePicked +1;
 if (onePicked >1){

 128

 alert("Please select rank 1 for one option only");
 form.elements[box].value ="";
 }
 }
else if (form.elements[j].value =="2") {
 twoPicked = twoPicked +1;
 if (twoPicked >1){
 alert("Please select rank 2 for one option only");
 form.elements[box].value ="";
 }
}
else if (form.elements[j].value =="3") {
 threePicked = threePicked +1;
 if (threePicked >1){
 alert("Please select rank 3 for one option only");
 form.elements[box].value ="";
 }
 }
else if (form.elements[j].value !=""){
alert("Please enter a number from 1-3");
form.elements[box].value ="";
form.elements[box].focus();
 }
}
}

function checkForm(form) {

var number = 0;

for (i = 0; i < form.adjectives.length; i++) {
 if (form.adjectives[i].checked == true){
 number = number+1;
 }
}

if (number != 3){
 alert("Please select three options for question 1.");
 return false;
}

var number2 = 0

for (j = 11; j < 19; j++) {
 if (form.elements[j].value !=""){
 number2 = number2+1;
 }
 }
if (number2 != 3){
 alert("Please select your three options for question 2.");
 return false;
}

 129

alert("Thank you for completing the form.");
return true;
}
</script>

</head>

<body>

<form name="check" action="" method="post" onSubmit="return
checkForm(this);">
<div class="ques">
<p>1. Choose THREE adjectives that you think best describe
successful websites?

If you would like to change a selection you have made, select it
again
to deselect it. </p>
<p>
<input type="Check box" name="adjectives" value="easy"
onclick="return count(this.form)" />
Easy to use

<input type="Check box" name="adjectives" value="attractive"
onclick="return count(this.form)" />
Attractive

<input type="Check box" name="adjectives" value="functional"
onclick="return count(this.form)" />
Functional

<input type="Check box" name="adjectives" value="fast"
onclick="return count(this.form)" />
Fast

<input type="Check box" name="adjectives" value="well-known"
onclick="return count(this.form)" />
Well-known

<input type="Check box" name="adjectives" value="colourful"
onclick="return count(this.form)" />
Colourful

<input type="Check box" name="adjectives" value="dynamic"
onclick="return count(this.form)" />
Dynamic

<input type="Check box" name="adjectives" value="interactive"
onclick="return count(this.form)" />
Interactive

<input type="Check box" name="adjectives" value="simple"
onclick="return count(this.form)" />
Simple

<input type="Check box" name="adjectives" value="varied"
onclick="return count(this.form)" />
Varied

<input type="Check box" name="adjectives" value="up-to-date"
onclick="return count(this.form)" />
Up-to-date </p>

 130

<p>2. From the following list of potential disadvantages of the
internet, choose
the THREE which you consider to be the most serious.

Then rank them by writing the numbers 1, 2 and 3 in the boxes. 1
= Most serious, 3
= least serious.
</p>

<p> It is expensive
<input type="text" maxlength="1" size="1" name="expensive"
onblur="count2(this.form, 11)" />

It is too slow
<input onblur="count2(this.form, 12)" type="text" maxlength="1"
size="1" name="slow" />

It provides information that is mainly of poor quality
<input onblur="count2(this.form, 13)" type="text" maxlength="1"
size="1" name="poor info" />

It offers too much information
<input onblur="count2(this.form, 14)" type="text" maxlength="1"
size="1" name="wastes time" />

It wastes too much time
<input onblur="count2(this.form, 15)" type="text" maxlength="1"
size="1" name="viruses or hacking" />

It can expose the user's computer to virus attacks or hacking
<input type="text" maxlength="1" size="1" name="adverts and junk
mail" onblur="count2(this.form, 16)" />

There are too many adverts and/or to much junk email
<input onblur="count2(this.form, 17)" type="text" maxlength="1"
size="1" name="broken links" />

There are often problems with broken links
<input onblur="count2(this.form, 18)" type="text" maxlength="1"
size="1" name="textfield9" />
</p>
<p>
<input type="submit" name="Submit" value="Submit" />
</p>
</div></form>
</body>
</html>

 131

Accessibility
Providing that submission of a questionnaire is not prevented in browsers without JavaScript,
validation routines will not prevent a questionnaire from being accessible as they will simply
not work. Though this may have an impact on the quality of the data received from a non-
JavaScript browser (e.g. if participants using these browsers accidentally miss questions or
answer them in an inappropriate format), it will not prevent the questionnaire from being fully
usable by these participants.

However, it may be beneficial to perform server-side validation as a 'back up' to the client-side
JavaScript validation. Because server-side processing occurs before the HTML page is
delivered to the browser, it is not dependent on the technology available on the client
computer. Although this is a slower method of checking the information, it is likely to be
necessary only where JavaScript is not available and thus where any problems with the data
have not been dealt with before the form is sent. This kind of 'back-up' validation also has
security benefits where users may have deactivated JavaScript in the browser to avoid
validation for any malicious reasons.

Server-side validation
Methods of validating in any of the main server-side languages are basically similar to those
using JavaScript, involving conditionals to check the contents or selection of form elements
and carrying out different actions accordingly (e.g. processing results by emailing them or by
adding them to a database, or preventing processing and returning a message to the
participant prompting them to check and resubmit).

An overview of server-side technologies and their use in gathering data via questionnaires can
be found in the 'Server-side processing 1: Introduction & E-mailing results' sections of this
guide.

Depending on the technology used, the following links may provide a useful source of
information, tutorials and examples on how to add server-side validation.

PHP/MySQL

A relatively straightforward introduction to validation using PHP.
http://webmonkey.wired.com/webmonkey/99/21/index4a_page2.html?tw=programming

A PHP tutorial which covers a range of different validation activities, leading to an example of
a complete form validated via PHP.
http://codewalkers.com/tutorials/47/2.html

Sklar, C. (2004) Learning PHP. Sebastapol, CA: O'Reilly.
Chapter 6: Making web forms.
http://www.oreilly.com/catalog/learnphp5/

Coggeshall, J. (2005) PHP Unleashed. Indianapolis: SAMS.
Chapter 4: Working with Forms in PHP.
Chapter 5: Advanced Form Techniques.
http://www.samspublishing.com/title/067232511X

ASP.NET

Microsoft's ASP.NET framework offers a number of ready-made web controls designed to carry
out server-side and, where available, client-side validation of web forms. These include
controls that check required fields have been completed, that check that data in particular

 132

ranges or patterns has been entered (e.g. in the format of a telephone or credit-card number),
and that compare data from one form element for consistency with that from another.

A useful tutorial on how these controls work with code examples is available from the ASP.NET
Quickstart tutorials
http://beta.asp.net/QuickStartv20/aspnet/doc/validation/default.aspx

A step-by-step guide is also available from the 4guysfromrolla.com site:
http://www.4guysfromrolla.com/webtech/090200-1.shtml

Mitchell, S. (2003) Teach yourself ASP.NET. Indianapolis: SAMS.
Chapter 12. Validating User Input with Validation Controls.
http://www.samspublishing.com/title/0672325438#

Walther, S. (2003) ASP.NET. Unleashed. Indianapolis: SAMS.
Chapter 2: Building Forms with Web Server Controls.
Chapter 3: Performing Form Validation with Validation Controls.
http://www.samspublishing.com/title/0672325438#

PERL/CGI

An introductory tutorial for adding validation using PERL.
http://www.elated.com/tutorials/programming/perl_cgi/ form_validation/

Guelich, S., Gundavaram, S. and Birznieks, G. (2000) CGI Programming with Perl.
Sebastapol, CA: O'Reilly.
Chapter 4: Forms and CGI;
Chapter 8: Security (available as a sample chapter).
http://www.oreilly.com/catalog/cgi2/toc.html

 133

Key design issues

Introduction
This section aims to provide the necessary skills to ensure that good design practices are
followed in the creation of an online questionnaire. Alongside other aspects, it provides the
supporting technical information for the design practices outlined in the design section of the
online questionnaires module. The following information is covered:

• Deciding whether to present a questionnaire as a one-page web form or as one
that spans multiple pages;

• Implementing a progress bar in multiple-page questionnaires;

• Delivering instructions via pop-up windows and alert boxes;

• Ensuring accessibility;

• Ensuring consistency: Browser issues, screen size, and the use of colour and
font.

Single or multiple-paged questionnaires
One-page questionnaires are generally easier to implement as they consist of a single web
form which can easily be processed through the submission of this one form. Where the
questionnaire is relatively short and straightforward in terms of structure, this is likely to be
the best option.

However, with longer or more complex forms, attempting to present the entire questionnaire
in one page may lead to problems such as the following:

1. Presenting all questions at the same time may give an impression of greater
length which may discourage participants from proceeding.

2. Opportunities to validate individual questions or smaller groups of questions as
the participant progresses through the questionnaire may be reduced (see the
'Form validation' section). In turn, this may lead to frustration if all questions
are validated at once at the end of the questionnaire.

3. Although skip patterns can be introduced through linking to anchors further
down a page (see 'links' section of the 'Introduction to HTML 2' page) or
through instructing participants to skip a question by scrolling to the next, this
may not be the most effective or intuitive method of delivering the questions.

4. If a participant drops out mid-questionnaire, all data will be lost and there will
be no opportunity for collection of partially-completed questionnaires or for
identification of questions that may be precipitating drop out.

For longer questionnaires, the use of multiple pages can add to the effectiveness of question
delivery, providing clearer routes through the questions and offering the opportunity for a
more sophisticated presentation of skip patterns. For example, links to different sections can
be added which participants can be prompted to select according to the answer to key
questions. However, because all the questions are not made visible, submitted and processed
at the same time, a number of extra aspects must be considered

1. An indication of progress through the questionnaire must be given, either
through the use of a progress bar (see below) or through structuring the
questionnaire into different sections and indicating the nature of this structure
to respondents (see the 'Design of online questionnaires 1: Appearance' section
of the questionnaires modules). If this is not done effectively, uncertainty over

 134

progress or a realisation that the indicators of progress are inaccurate, may lead
to frustration and drop out.

2. A decision must be made on whether data should be submitted for processing at
the end of each page, or at the end of the questionnaire. If it is done at the end
of each page, this will allow partially-completed questionnaires to be collected
and any problem questions to be identified, but measures must be taken to
identify or prevent multiple submission of any sections. If it is done at the end
of the questionnaire, it will be necessary to pass information supplied up to a
given point in the questionnaire from page to page.

3. As participants progress through the questionnaire, they may wish to return to
a previous page to review and change answers. Unless measures are taken to
ensure that the data they have already entered is still available when they do
this, it is important to inform them that answers already entered may be no
longer available if they go back. It may also be important to add instructions
not to go back through a questionnaire if each page is to be submitted
individually, or to add validation routines preventing submission a second time.

Implementing a progress bar
Where a questionnaire is delivered across multiple pages, the use of a progress bar can
provide an indication of the proportion of the questionnaire completed and may thus reduce
drop out rates. This is likely to be more effective when combined with instructions that give an
accurate indication of the time needed to complete each section. Two relatively
straightforward methods of implementing a progress bar are shown below:

Table cells

Perhaps the simplest method of implementing a progress bar is to include a two-cell table at
the top or bottom of each page. By making the colour of the left-hand cell different to that of
the right hand cell, and increasing its width as the user progresses through the pages, this can
provide a graphical representation of progress. If this method is used, summary text should be
added to describe the function of the table for users of screen-readers and speech browsers.

e.g.

Page 1 of 5

<table width="400" border="1" bordercolor="#000033" summary="Two-
cell table used to provide a visual representation of progress
through the questionnaire: 20% complete.">
<tr>
<td width ="20%" bgcolor="#000033"> </td>
<td> </td>
</tr>
</table>

Page 2 of 5

(The width of the first table cell has been increased to 40%).

 135

Page 3 of 5

(The width of the first table cell has been increased to 60%).

Similar effects could also be achieved through the use of CSS to style the table and cells.

If this method is chosen, it is important to be aware that there may be some unpredictability
in the way that the table cells render in different browsers. Thus it important to test in
different browsers and to consider supporting the visual representation of progress with text.

Graphics

An alternative to this is to create a series of graphics using a graphics program such as Jasc
Paint Shop Pro, Adobe Photoshop, or Macromedia Fireworks. These can then be added at the
top or bottom of each page. This has the advantage of allowing the creation of a more
sophisticated or professional-looking progress bar, but it depends on having some familiarity
with how these programs work (although it is relatively easy to create basic images using auto
shapes such a circles or rectangles). Depending on the size of the images used, it may also
have an impact on the overall file size of the questionnaire, possibly increasing download
times and leading to increased non-response. If these images are used, alt text should also be
added to provide an alternative description for users of text-only browsers.

e.g.

Page 1

<p><img src="bar1.gif" alt="Progress bar: part 0 of 6"
width="398" height="40"></p>

Page 2

Page 3

Delivering instructions via pop-up windows and alert
boxes
When offering specific instructions for different question types, it can be useful to include
optional instructions which can be accessed by the user when required or delivered where a
user experiences difficulty. This can be achieved through the use of simple JavaScripts to
insert instructions in alert boxes and pop-up windows.

 136

Alert boxes

The following is an example of a link which displays an alert box message when clicked:

Click to see the alert box message

The code to produce this link is as follows:

<a href="JavaScript:void(0);" onclick="alert('Alert box message
is added here...');">Click to see the alert box message

The link "JavaScript:void(0);" is an 'empty' link so that when the user clicks on it, a
new document is not loaded, but some JavaScript is carried out. The action alert('Alert
box message is added here...') is triggered by the onclick event handler when
the user clicks on the link. The contents of the alert box are placed within inverted commas. It
is important to ensure that the message does not include inverted commas as this would
signal the end of the message and lead to an error which would prevent the box being
displayed. Rather than using the inverted comma mark ('), the special character codes
‘ (‘) and ’ (’) should be used to prevent this.

e.g.

Click to see the use of special characters rather than inverted commas

is produced by:

<a href="JavaScript:void(0);" onclick="alert('It’s
important not to use inverted commas. Special characters should
be used instead (‘ and ’)');">Click to see the use of
special characters rather than inverted commas.

It is also possible to change the message in the status bar at the bottom of the browser
window to provide instructions on how to use the link when the user places his/her mouse
over the link. In the following link, the status bar text is changed to 'Click to see the alert box
message'.

Hold your mouse over the link to see the changed status bar text.

<a href="JavaScript:void(0);" onclick="alert('Alert box message
added here...');" onmouseover ="window.status = 'Click to see the
alert box message'; return true;" onmouseout ="window.status =
'';">Hold your mouse over the link to see the changed status bar
text.

The code for changing the text is window.status = "Add status bar text
here...". This is triggered by an onmouseover event handler so that the action occurs
when the mouse is placed over the link.

The action triggered by the onmouseout event when the user's mouse moves away from the
link deletes the text in the status bar, replacing it with an empty string ("").

In both cases, it is necessary to add the syntax return true; to preserve the text (or
empty string) that has been set until another instruction to change the status bar text is
reached.

 137

To ensure that the instructions remain accessible when a user accesses them using the
keyboard rather than a mouse, it is also important to add the
onfocus="this.onmouseover();" and the onblur="this.onmouseout();"
code, which ensures that the same actions will take place when a user without a mouse tabs
to or away from the image.

<a href="JavaScript:void(0);" onclick="alert('Alert box message
added here...');" onmouseover ="window.status = 'Click to see the
alert box message'; return true;" onmouseout ="window.status =
'';" onfocus="this.onmouseover();"
onblur="this.onmouseout();">Tab to the link or hold your mouse
over it to see the changed status bar text./>

Pop-up windows

In a similar way, JavaScript can be used to produce a link which opens a pop-up window when
clicked. To create such a link, the following JavaScript is placed in the head of the document:

<script language="javascript" type="text/javascript">

function popInstr(msg){
var win = window.open ('blank.htm', '',
'width=300,height=75,left=150,top=150scrollbars=yes');
win.document.write("<html><head><title>Example of 'pop-up'
instructions'</title></head><body><p>" + msg + "</p><p>CLOSE
</p></body></html>");
win.document.close();
}

</script>

The following HTML/JavaScript is then placed in the body of the document:

<p>Select the following link to <a href="JavaScript:void(0);"
onclick="popInstr('Further instructions in a pop-up window');"
onmouseover ="window.status = 'Click to see the pop-up window';
return true;" onmouseout ="window.status = '';">further
instructions if required. These will open in a pop-up window
so you will need to disable any pop-up blocking software to see
them.</p>

 138

Learning activity

Examine the different parts of the code to try to establish what their functions are. Refer to the
explanation below to check.

<script language="javascript" type="text/javascript">

function popInstr(msg){
var win = window.open ('blank.htm', '',
'width=300,height=75,left=150,top=150scrollbars=yes');
win.document.write("<html><head><title>Example of 'pop-up'
instructions'</title></head><body><p>" + msg + "</p><p>CLOSE
</p></body></html>");
win.document.close();
}

</script>

<a href="JavaScript:void(0);" onclick="popInstr('Further
instructions in a pop-up window');" onmouseover ="window.status =
'Click to see the pop-up window'; return true;" onmouseout
="window.status = '';">

Explanation

Section of code Explanation
<script language="javascript"
type="text/javascript">

Scripts in a document must be surrounded by
the script tags <script></script>. This
tells the browser that what follows is a script
and indicates which scripting language is being
used to allow it to interpret the information
correctly.

function popInstr(msg){ This declares a function called popInstr and
tells it to expect an argument called msg to be
included when the function is called. See the
'Introduction to JavaScript' section for more
information about functions and arguments if
required. The function is surrounded by curly
brackets ({}).

var win = window.open ('blank.htm', 'blank',
'width=300,height=75,
left=150,top=150,scrollbars=yes');

This declares a variable called win which
consists of a new window created using the
window.open method. The new window opens
an HTML document saved in the same folder
called blank.htm which is given the name
blank. This window is set to a size of 300x75
pixels and is placed 150 pixels from the top-left
corner of the user's screen. It is given
scrollbars, but no tool bar, status bar or menu
bar.

It is important to add all the settings
information with no spaces to ensure that the
browser can recognise it correctly.

win.document.write("<html><head><title>Example
of 'pop-up' instructions'</title></head>
<body><p>" + msg + "</p><p><a
href='JavaScript:void(0);'
onclick='window.close()'>CLOSE
</p></body></html>");

This writes HTML to the new window (win)
using the document.write method.
Everything within the brackets is written to the
document in the window. The contents are
added as strings between inverted commas. The
syntax '+ msg +' tells the function that the
argument called msg should be fed in to the
function at this point when it is called. The plus

 139

signs are used to add this argument to the
contents of the two strings on either side (i.e.
the message is added to the HTML written to the
new window). See the 'Introduction to
JavaScript' section for more information about
arguments if necessary.

The HTML written to the window includes an
'empty' link with an onclick event handler that
closes the window when the link is clicked using
the window.close() method.

(<a href='JavaScript:void(0);'
onclick='window.close()'>CLOSE
)

CSS or HTML attributes and values could be
added at the relevant points to change the style
of the contents of the new document.

win.document.close(); The document.close method is then added to
indicate that the process of writing to the
window (win) is complete.

<a href="JavaScript:void(0);"
onclick="popInstr('Further instructions in a
pop-up window');" onmouseover ="window.status =
'Click to see the pop-up window'; return true;"
onmouseout ="window.status = '';">

This is an 'empty' link which means that when
the user clicks on it, a new document is not
loaded, but a JavaScript function is carried out.
There are three event handlers onclick,
onmouseover, and onmouseout. When the
user select the link(onclick) , the function
popInstr is called and the argument
'Further instructions in a pop-up
window' is fed in to the function. When the
user holds his/her mouse over the link
(onmouseover), the status bar text changes
to 'Click to see the pop-up
window'. When the user moves his/her mouse
away from the link (onmouseout), the status
bar text is deleted, changing to an empty string
('').

For further information see the following link for a range of JavaScript examples with source
code specifically related to windows.

http://www.irt.org/script/window.htm

N.B. It should be remembered that some users may not have JavaScript activated in the
browser and the use of alternative instructions should be included which will display for users
without JavaScript through the <noscript> tag - see 'Introduction to JavaScript' section.

Accessibility
There are a number of simple steps that can be taken to increase the accessibility of an online
questionnaire and its associated web pages. These can ensure that the contents are accessible
to users with a range of user-agents including text-only and screen reading browsers and
other assistive technologies, and mobile web-enabled devices.

Designing the site to be compliant with standards set out by the World Wide Web Consortium
(W3C) is an important step in ensuring accessibility. The resources section of this guide
includes a link to W3C's validation tools which allow web pages to be checked for standards
compliance. By uploading a page or entering the URL, the tools will run automated tests and
report on any pieces of invalid markup in the pages.

It is also good practice to separate content from presentation in web pages by using Cascading
Style Sheets (CSS) to add design features (See the 'Introduction to CSS' section of this guide).
This allows the user to control how the site should be presented, allowing style information to
be overridden to allow presentational features such as text size, font, colour and layout to be
changed according to need or preference. It also maximises the possibilities that the site will

 140

be fully accessible to a range of user agents (e.g. browsers, media players and assistive
technologies).

Beyond this, the W3C Web Accessibility Initiative guidelines (WAI) includes a wide range of
measures which should be taken to ensure that a website is accessible
(http://www.w3.org/WAI/intro/wcag.php). The guidelines divide these measures into Priority 1,
2 or 3 according to how essential they are to accessibility. Some key measures that should be
taken for accessibility are shown below.

Key measures

Some key measures that should be taken to ensure accessibility are:

• If scripting and third-party plug-ins (e.g. Flash) are used, ensure that all
content remains accessible when these are not available in the user's browser.
Provide alternatives to scripts if necessary through the use of
<noscript></noscript> tags (see the 'Introduction to JavaScript' section
of this guide) and provide text-only alternatives to multimedia;

• Make explicit links between form labels and form elements using the <label
for="name of element"> tag, and make sure that there is a logical tab
order within forms to make them fully useable and to ease navigation via
keyboard (see the 'Web forms' section);

• Provide text alternatives for graphics to ensure the site contents can be
accessed in non-graphical browsers. It is important to make sure that this
provides an adequate description of the value of the image on the page.
Descriptions are added using the alt="Add description" attribute of the
image tag as follows:

<img src="logo.gif" alt="University of Leicester Logo"
width="100" height="50" />

• Use descriptive links to ensure links make sense out of context and make them
accessible to user agents that present all links on a page as a simple list. e.g.

Select the following link for more information about accessibility

rather than

For more information about accessibility, click here

• Ensure that colour schemes are appropriate so that there is adequate contrast
between the colours used. Ensure that different colours are not used to provide
information that can not be otherwise gleaned by users who can not distinguish
between them

• A service called 'Vischeck' allows pages to be tested for suitability for colour-
blind users. The service simulates the appearance of pages to users with
different forms of colour blindness:

http://www.vischeck.com/vischeck/;

• Avoid excess movement on screen or flickering screens caused by elements
such as animations or 'blinking text' which can cause problems for epileptic
users.

• Use relative sizing to make contents flow into viewing areas of different sizes
and to allow users to control the size of text through their browser settings. e.g.:

 141

<table width="95%">

rather than

<table width="560">

• Use the summary="Add description" attribute to describe the purpose
of tables, especially if they are used for layout rather than data. Organise data
in tables to ensure that it makes sense if read by screen-reading software
(usually row by row from left to right).

• Use consistent and clear navigation, colours and icons and make language clear
and as simple as possible for the purpose and intended audience of the
questionnaire. This will make the contents as accessible as possible to users
who may have reading and/or cognitive disabilities.

Consistency
The following issues need to be considered alongside the accessibility information given above.
This will ensure that the questionnaire appears as consistently as possible in different
browsers and on different computer systems.

Browser issues

It is important to design a questionnaire with an awareness that participants may be using a
range of different browsers and that that the way the questionnaire looks in these browsers
may vary.

Information on the main browsers available at the time of writing is available on the
Worldwide Web Consortium (W3C) website at the link below along with statistics on the usage
levels of each (though it should be noted that the statistics are based on users of the site and
should thus be generally considered to be skewed in favour of more technically proficient
users).

http://www.w3schools.com/browsers/default.asp

At the time of writing, estimates suggest that at least three-quarters of web users have
Microsoft Internet Explorer (many suggest that the proportion is substantially higher than this),
with the vast majority of the remainder using the Mozilla Firefox browser.

Maintaining a straightforward design for the questionnaire, ensuring it is designed for
accessibility (see above) and validating the HTML and or CSS used to create it (see the
'Resources' section of this guide for further information if required) will limit differences of
appearance in different browsers. However differences in aspects such as the size and
appearance of form elements and tables may remain. It is thus good practice to test pages on
as many different browsers and systems as possible, and as an absolute minimum to install
the latest versions of the three most popular browsers on your desktop and use these to test.
Friends and acquaintances with different systems (e.g. AppleMacs or PCs) and older versions
of browsers can also be called on to test for any problems.

Where design problems are found in particular systems and browsers, an attempt can be
made to change the design to best accommodate them, bearing in mind usage statistics, the
context of the research, and the overall balance of probability of a participant having this
browser.

It is also possible to use browser detection JavaScript to identify which browser is being used.
A number of tutorials on how to do this as well as free scripts can be found using a simple
search for 'browser detection' or 'browser sniffing'. The browser information can then be used
to deliver different designs tailored to particular browsers. This can be done either by linking

 142

to different CSS files designed for different browsers, or redirecting to different versions of the
same questionnaire. However, when considering this, it should be remembered that users may
not have JavaScript activated in the browser - see the 'Introduction to JavaScript' section).
Aiming for an accessible and relatively straightforward design should avoid the necessity for
browser detection.

It is also possible to collect information about the user's computer and browser alongside the
data from the questionnaire (see the 'Gathering information about participants' section of this
technical guide. This can allow an overview of the technologies available to respondents to be
gained. If it becomes clear, for example, that older or less common browsers are being used
to access the questionnaire, it can be tested on these browsers and redesigned if necessary.

Plug-in detection

Where a questionnaire includes multi-media, it should be remembered that users may not
have the necessary technology installed. In many cases, the user's browser will automatically
detect that a particular plug-in is required and prompt the user accordingly, although many
users may be reluctant to proceed with installing software on their machines. Clearly
specifying minimum specifications required for the questionnaire and adding an easily
accessible link to any plug-in software required may increase the chances of the user doing
this.

JavaScript browser detection (or 'browser sniffing') can also be used to test whether or not the
user has certain technology installed. If, for example, Macromedia Flash content has been
used extensively to deliver video or animation as part of the questionnaire, it may be
necessary to redirect the user to instructions or alternative content if he or she does not have
a suitable version of Flash installed. The following web site provides a good explanation of
Flash detection (and its limitations) along with free scripts to carry it out:

http://moock.org/webdesign/flash/detection/moockfpi/

The latest version of Macromedia Flash also allows for files to be published with automatic
detection of which version of the Flash player is being used to access them, followed by
automatic redirection to an alternative site where the version is not adequately up to date.

Screen size

When designing a questionnaire, it is important to try to ensure that it can be viewed
successfully on a range of different screen sizes. At the time of writing, the most common
screen size is 800 x 600 pixels (with an approximate typical page viewing area of 745 x 415
pixels when the space taken by the browser toolbars is considered). However other common
screen sizes are:

Screen size Typical viewing area
640 x 400 pixels 585 x 295 pixels
1024 x 768 970 x 580
1280 x 1024 1225 x 840

Increasingly, web statistics such as those from the Worldwide Web Consortium (W3C) indicate
that very few computers have screen settings of 640 x 400, and it is common practice for web
developers to design their pages with 800 x 600 as a notional minimum.

If, however, a researcher wishes to ensure that his or her questionnaire will be fully accessible
to those who may be using older equipment, he or she may decide to design for a 600 x 640
minimum. This assumes that any items such as images or tables which are larger than 585 x
295 pixels may not be fully visible in the browser window that and scrolling will be required.

Limiting width is particularly important as horizontal scrolling tends to produce serious
usability problems which may affect response rates and validity of results. Although vertical
scrolling does not tend to present such serious usability problems in general web use, this may

 143

need to be given particular consideration for online questionnaires. For example, if the
possible responses to a particular question are not all visible at the same time, this may have
an effect on results. For this reason, keeping the height of each question to a maximum of 295
pixels should be considered.

To test how a questionnaire appears at different sizes, a link to a pop-up window set to the
test size can be used. The HTML / JavaScript to achieve this is as follows:

<p><a href="JavaScript:void(0);"
onclick="window.open('question.htm','test','width=585,height=295,
scrollbars=yes')">Screen size test</p>

It is necessary simply to replace 'question.htm' with the path to the test page, and to change
the width and height to the desired test size.

Colour

When choosing a colour scheme for the questionnaire it is recommended that web-safe colours
are used to ensure consistency. The 'web-safe' colour palette consists of 216 colours which are
not subject to variation on different types of monitors and systems. The following link provides
a palette of web-safe colours organised by either hue (colour) or value (lightness). This makes
it easier to design appropriate colour schemes using these colours.

http://www.lynda.com/hex.html

Font

When choosing a font for use in the questionnaire, it is important to remember that the user's
computer may not have particular fonts that you may wish to use. If the user's browser
automatically replaces a font that you have used, this may have an impact on the layout and
usability of you questionnaire, e.g. by having unanticipated effects on the spacing of possible
responses or increasing the width of items beyond the smallest screen sizes.

Using common fonts is recommended, as is the use of 'font-families' which provide the
browser with information about which fonts should be used as a replacement in a case where a
particular font is not available. Thus the use of the HTML tag <font face="Verdana,
Arial, Helvetica, sans-serif"> (or the CSS rule body { font-family:
Verdana, Arial, Helvetica, sans-serif}) tells the browser to use Arial if
Verdana is not available, followed by Helvetica, and finally by the default sans-serif font. The
questionnaire can then be checked with each of these fonts to ensure that the size, spacing
and layout is suitable with each.

 144

Gathering information about participants

Introduction
Beyond the survey data, there are a number of possibilities for the collection of information
that may be of use to the researcher.

This page will describe how information can be stored in hidden form fields to be submitted
alongside the data from visible form fields.

It will also provide an overview of how JavaScript and a technology called 'server-side
includes' can be used to collect the following:

• IP addresses and date and time information including approximate completion
time which may be useful for security and identifying and removing anomalous
submissions.

• The URL of the referring page (the page which contained the link the participant
followed to reach the questionnaire) which may be useful in providing
information about the success of the forms of advertising used to elicit
participation.

• Information about the user's computer and browser such as whether JavaScript
and cookies were enabled, the screen-size of the monitor used, or which type
and version of browser was used to access the questionnaire. This information
may prove valuable in determining whether some features such as validation
were available when the participant completed the questionnaire. It is also likely
to be useful in gaining an overview of the technologies available to respondents.
If it becomes clear, for example, that older or less common browsers are being
used to access the questionnaire, it can be tested on these browsers and
redesigned if necessary.

Finally, it will outline how cookies can be saved onto a participant's computer so that action
can be taken if the same computer is used to access the questionnaire for a second time.

Adding data to hidden form fields
As their name suggests, hidden form fields and their contents are not displayed in the browser.
They can thus be used to submit information along with the form data which it is not
necessary or desirable to display. It should be remembered, however, that a participant can
access the information in a hidden form field simply by opting to view the HTML source code
for the page.

Adding information to a form in a hidden form field is straightforward. The code is as follows:

<input type="hidden" name="hidden1" value="value added by the
researcher or set via HTML or JavaScript" />

When the form is submitted, the contents of the form field (the value) are added alongside the
data from visible form fields. Thus, for example, if more than one version of a questionnaire is
released, the version number can be added to the form as follows:

<input type="hidden" name="version" value="1" />

When data is submitted, it would thus be clear which version of the questionnaire was
completed.

 145

Client-side or Server-side information gathering
Where the ability to gather user information is desired as an 'extra' in cases where the
researcher is able to accept that it may not be possible to gather information from all
participants, the use of client-side information gathering using JavaScript is ideal as it allows a
straightforward way of collecting a wide range of information. It does not matter what type of
server the questionnaire is hosted on as the processing that collects the information and adds
it to the form data is carried out on the user's computer.

In cases where the gathering of user information is essential to a study, however, it is
recommended that the process is carried out using server-side processing which will operate
regardless of the technologies available on the client computer. This is because JavaScript may
not be available to all browsers and because users may choose to disable JavaScript on their
machines.

A further advantage of using server-side processing is that it is more likely to allow accuracy
and consistency of information to be achieved. For example, JavaScript relies on the accuracy
of the time and date on the user's computer which may be open to variation across different
machines. Server-side technologies, however, take this from a single source (the server). It is
relatively straightforward to gather a range of information using ASP.NET or PHP, depending
on the server technology used. (see the 'Server-side processing' sections for more information
on these technologies).

For researchers with a server capable of supporting them, Server-Side Includes (SSI) provide
perhaps the most straightforward and easily-implemented way of gathering user information
through server-side processes. This page will focus on the use of this technology alongside
JavaScript.

Data gathering via Server-Side includes (SSI)
Server-Side Includes are designed to allow small pieces of a web page to be dynamically
generated. They are frequently used in web pages to add information such as the date the
page was last modified or the current time and date. SSI pages are generally marked with
an .shtml suffix which signals to the server that any SSI directives should be processed
server-side.

Where the questionnaire is hosted on a server that supports them, they offer a straightforward
and easily-implemented method of collecting user information. The apache web server can
easily be configured to allow them to be used and simple measures can be taken to ensure
their use does not lead to any vulnerability in terms of security. The following tutorial
describes how this can be done and provides a general overview of SSI.

http://httpd.apache.org/docs/1.3/howto/ssi.html"

NB. Server-Side Includes are not supported by windows-based Microsoft server technologies
for which ASP.NET is likely to provide the best alternative.

The basic structure of an SSI directive is as follows:

<!--#command argument="value" -->

For example, if the following SSI directive is placed in a web page on an SSI compatible server,
it will automatically be replaced by the time and date that the page was last modified.

<!--#echo var="LAST_MODIFIED" -->

The var="LAST_MODIFIED" section sets a standard 'environment variable' which, in this
case, is the time and date of the last modification. The #echo command then writes this
variable to the web page, effectively replacing the directive with the value of the variable. The

 146

whole directive is placed within HTML comments <!-- --> so that it will be ignored by the
browser if the server fails to process it correctly.

By placing SSI directives in hidden text boxes, information can be collected and submitted
alongside the form without interfering with the working of the questionnaire. The following
information can be easily gathered using SSI directives:

Date and time

The date and time that the questionnaire was accessed can be established using the following
SSI directive:

<!--#echo var="DATE_LOCAL"-->

If this is placed in a web page on an SSI compatible server, it will be replaced by the time and
date in the format specified by the default settings of the server. This may be as follows:

Day, Date, Time, Time zone, e.g.

Saturday, 31-Dec-2005 23:59:50 GMT

To modify the format of the date, the following SSI directive can be placed immediately before
<!--#echo var="DATE_LOCAL" -->.

<!--#config timefmt="value" -->

where value is replaced by a series of SSI time codes such as the following:

Code Description Example
%a Abbreviated day of the week Sat
%A Full day of week Saturday
%b Abbreviated month name Dec
%B Full month name December
%D Numerical date (likely to be expressed in the Month/Day/Year format) 12/31/05
%d Day as digit 31
%m Month as digit 12
%H Hour (24-Hour format) 23
%I Hour (12-Hour format) 11
%M Minutes 59
%S Seconds 50
%p AM or PM PM
%T 24-Hour time 23:59:50
%y 2-digit year 05
%Y 4-digit year 2005
%B Full month name December

Thus the following directives

<!--#config timefmt="Date: %d/%m/%Y Time: %T" --><!--#echo
var="DATE_LOCAL"-->

display the date and time as follows:

Date: 31/12/2005 Time: 23:59:50

This information can be added to hidden form elements for submission with the form data as
follows:

<input type="hidden" name="date" value="<!--#config
timefmt="%d/%m/%Y" --><!--#echo var="DATE_LOCAL"-->" />

 147

<input type="hidden" name="time" value="<!--#config timefmt="%T"
--><!--#echo var="DATE_LOCAL"-->" />

Browser information

It is possible to use SSI directives to gather information about the browser which is being used
to access the questionnaire. As stated in the introduction, this information may prove valuable
in allowing an overview to the gained of the technologies available to respondents. If it
becomes clear, for example, that older or less common browsers are being used to access the
questionnaire, it can be tested on these browsers and redesigned if necessary.

Information about browser type and version can be established using the following directive:

<!--#echo var="HTTP_USER_AGENT" -->

When placed in a web page on an SSI compatible server, it will be replaced by a string of
information about the browser's name, version, platform, and language settings. Some of the
information may be confusing especially software/version information which usually begins the
string and which may suggest that an older version is being used. Information from some
browsers may also be more extensive than from others. However, the type and version can
usually be established successfully. Some examples of the results of the directive when the
most common browsers are used are as follows, with the key browser information highlighted
in bold:

Internet Explorer 6

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)

Firefox 1.0.4

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-GB; rv:1.7.8) Gecko/20050511 Firefox/1.0.4

Netscape 7.2:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.2) Gecko/20040804 Netscape/7.2
(ax)

Opera 7.54

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) Opera 7.54 [en]

If you wish to decipher any more unusual strings of information that may be returned, it may
be necessary to refer to explanatory lists of user agents. The following is a very extensive list
of browser types and typical user agent strings that they return:

http://www.zytrax.com/tech/web/browser_ids.htm

A second SSI directive which offers information about the participant's browser is as follows:

<!--#echo var="HTTP_ACCEPT" -->

This provides a list of the types of information the client will accept from the server. These are
expressed as a list of MIME types in a type/acceptable subtype format as in the following
example:

image/gif, image/jpeg, application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, application/x-shockwave-flash, */*

The */* syntax indicates that the client machine will accept all types of information.

 148

A final directive which can be used to collect browser information is as follows:

<!--#echo var="HTTP_ACCEPT_LANGUAGE" -->

This provides the language(s) that are defined as being the user's preferred language(s), as in
the following example which specifies that Portuguese (Brazilian) and English (British) are the
preferred languages stated by the client machine:

pt-br, en-gb

User identification

When placed in a web page on an SSI compatible server, the following directive will be
replaced by the IP address of the client computer accessing the page.

<!--#echo var="REMOTE_ADDR" -->

The IP address is a group of four numbers separated by full stops (e.g. 81.77.39.115) which
are associated with a particular computer or server. Collecting the IP address of the client
computer that the participant used to access the questionnaire is worthwhile as repeat
submissions from the same IP address within a short space of time may indicate multiple
submission from the same participant and can be investigated further.

However, the use of IP addresses as the sole means of identifying multiple submissions from
the same machine is unreliable as the IP address of a computer which accesses the internet
via an internet-service provider is likely to be different each time it is connected to the internet.
Possible multiple submissions are thus only likely to be traceable if they are carried out in a
single internet session. Even when there is only a short space of time between multiple
submissions from the same IP address, it may be difficult to establish whether they have come
from the same user or from different users of shared computers or of computers on a shared
server with the same IP address.

The use of cookies to identify particular computers offers potential for more reliable user
identification, but this remains limited (see section below).

For truly effective access control, a server-side system of access via password is likely to be
needed so that only invited participants with a password can access the questionnaire (see the
'Server-side processing 2' section of this technical guide.

The referring page

The following directive can be used to display the URL of the page from which a link to the
questionnaire was followed:

<!--#echo var="HTTP_REFERER" -->

If the participant reached the questionnaire directly without following a link, there will be no
referrer and the directive will be replaced by the following:

(none)

 149

Data gathering via JavaScript
It is also possible to use JavaScript to collect information about the user's computer, date and
time information, and the referring link (the link that the participant followed to reach the
questionnaire). The following information can be gathered:

Name of browser:

Version of browser:

Browser platform:

Screen size:

Cookies enabled? (true or false)

Referring link:

Date:

Time started (measured from when the page is loaded)

Time ended (added when the form is submitted)

Completion time

In a questionnaire, this information could be placed within hidden form elements and
submitted alongside the questionnaire data.

NB. It should be remembered that time information is measured according to the clock
settings on the client machine which may not be accurate and which may mean that data is
subject to time-zone differences.

However, the completion time is likely to be accurate as the start and end times will be taken
from the same clock settings.

 150

The form

To collect this information, hidden form fields are given suitable names and placed within the
questionnaire form which is also given a suitable name. The information is added to the hidden
form fields through the action of two functions called startForm() and endTime().

The startForm() function adds the relevant information to the first eight hidden form fields
when the form loads. The function is called by the onload event handler when the body of
the HTML document loads into the browser.

The endForm() function adds the time of the questionnaire submission and the total
completion time when the form is submitted. It is called by the onSubmit event handler in
the form tag.

The HTML is shown below.

<body onload="startForm();">

<form name="quesForm" action="" method="post" onSubmit="return
endTime();">

ADD THE FOLLOWING BOXES AT THE END OF THE QUESTIONNAIRE
QUESTIONS...

<input name="browserNameBox" type="hidden" />
<input name="browserVersionBox" type="hidden" />
<input name="browserPlatformBox" type="hidden" />
<input name="screenSizeBox" type="hidden" />
<input name="enabledCookiesBox" type="hidden" />
<input name="referrerBox" type="hidden" />
<input name="dateBox" type="hidden" />
<input name="startTimeBox" type="hidden" />
<input name="endTimeBox" type="hidden" />
<input name="completionTimeBox" type="hidden" />

<input type="submit" name="Submit" value="Submit" />

</form>

</body>

Data collection

As you will see, the data collection functions take advantage of the following JavaScript
objects and properties to collect the information:

Object&property Description Example
navigator.appName Returns the name of the browser being used to access the

page.
Microsoft Internet Explorer

navigator.appVersion Returns the version of the browser. 4.0 (compatible; MSIE 6.0;
Windows NT 5.1)

navigator.platform Returns the browser's platform or operating system. Win32
navigator.cookieEnabled Returns a value of true if cookies are enabled and false if

they are disabled.
true

screen.width returns the width in pixels of the user's screen. 1024
screen.height returns the height in pixels of the user's screen. 768
window.document.referrer returns the URL of the page from which the user navigated

to the current page. Returns an empty string if there is no
referring link.

http:\\www.le.ac.uk

 151

date.getDate() Returns the day of the month 25
date.getMonth() Return the month of the year as a number from 0

(January) to 11 (December)
11

date.getFullYear() Returns the year (may not work in older browsers) 2005
date.getHours() Returns the hour of the day (24-Hour format) 23
date.getMinutes() Returns the minute of the hour 59
date.getSeconds() Returns the second of the minute 50
date.getTime() Returns the current time in milliseconds 112473628262

The information is automatically returned when the objects and properties are included in the
code.

The JavaScript functions

The code for the first function is as follows:

function startForm(){

// Change the value of the hidden form field called
'browserNameBox' to the value returned by the 'appName' property
of the 'navigator' object (i.e. the name of the browser used to
access the form)

document.infoForm.browserNameBox.value = navigator.appName;

// Change the value of the browserVersionBox

document.infoForm.browserVersionBox.value = navigator.appVersion;

// Change the value of the browserPlatformBox

document.infoForm.browserPlatformBox.value = navigator.Platform;

// Change the value of the enabledCookiesBox

document.infoForm.enabledCookiesBox.value =
navigator.cookieEnabled;

// Change the value of the screenSizeBox by adding the values of
screen.width and screen.height separated by a string (" x ")

document.infoForm.screenBox.value = screen.width + " x " +
screen.height;

// Change the value of the referrerBox

document.infoForm.referrerBox.value = window.document.referrer;

// Change the value of the dateBox

// Declare a new date object given the name 'date'

var date = new Date();

// Set a variable called 'day' to store the day of the month of
this date object

var day = date.getDate();

 152

// Format the day by adding a zero if it is lower than 10 so that
the fifth will appear as 05 rather than 5

if (day < 10){

day = "0" + day;

}

// Set a variable called 'month' to store the month of this date
object and format it so that January appears as 01 rather than 0
and December appears as 12 rather than 11

var month = date.getMonth() + 1;

if (month < 10){

month = "0" + month;

}

// Set a variable called 'year' to store the year of this date
object

var year = date.getFullYear();

// Add the full date to the hidden form field called dateBox by
adding the variables 'day', 'month' and 'year' separated by
strings ("/")

document.infoForm.dateBox.value = day + "/" + month + "/" + year;

// Change the value of the startTimeBox by setting a new date
object and storing the hours, minutes and seconds of this date
object in variables. In each case, format the time so that digits
lower than 10 are preceded by a zero

var startTime = new Date();
var hour = startTime.getHours();
if (hour < 10){
hour = "0" + hour;
}
var minute = startTime.getMinutes();
if (minute < 10){
minute = "0" + minute;
}
var second = startTime.getSeconds();
if (second < 10){
second = "0" + second;
}

// Add the complete time to the 'startTimeBox' hidden form field
by adding the variables 'hour', 'minute' and 'second' separated
by strings (" : ")

document.infoForm.startTimeBox.value = hour + " : " + minute +
" : " + second;

 153

// Finally set a variable called 'startTiming' with the current
time in milliseconds. This will be used to calculate completion
time.

now = new Date();
startTiming = (now.getTime())
}

The code for the second function is as follows:

function endForm(){

// Get the current time in the same way as in the previous
function

var endTime = new Date();
var hour = endTime.getHours();
if (hour < 10){
hour = "0" + hour;
}
var minute = endTime.getMinutes();
if (minute < 10){
minute = "0" + minute;
}
var second = endTime.getSeconds();
if (second < 10){
second = "0" + second;
}

// Add the complete time to the hidden form field 'endTimeBox'

document.infoForm.endTimeBox.value = hour + " : " + minute + " :
" + second;

// Set a variable called 'endTiming' with the current time in
milliseconds.

now = new Date();
endTiming = (now.getTime());

// Calculate completion time by subtracting the start time
obtained by the first function (called when the page loaded) from
this end time (calculated at submission). Round up the result and
convert it from milliseconds to seconds. Store it in a variable
called 'timeTaken'.

timeTaken=Math.round((endTiming-startTiming)/1000);

// Add this to the hidden form field 'completionTimeBox' followed
by the string " secs"

document.infoForm.completionTimeBox.value = timeTaken + " Secs";

// Finally, return true to the form to allow submission to
proceed

 154

return true;
}

The complete HTML and code is shown below. There are also instructions on how to
incorporate the hidden form fields and code into your own questionnaires.

<html>
<head>
<title>Exploring ORMs | Example of collecting user information
via JavaScript</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">

<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
@import url(../generic/main.css);
</style>

<script language="javascript" type="text/javascript">

function startForm(){

// Change the value of the hidden input fields that contain
information gathered when the form is loaded

document.infoForm.browserNameBox.value = navigator.appName;
document.infoForm.browserVersionBox.value = navigator.appVersion;
document.infoForm.browserPlatformBox.value = navigator.platform;
document.infoForm.enabledCookiesBox.value =
navigator.cookieEnabled;
document.infoForm.screenSizeBox.value = screen.width + " x " +
screen.height;
document.infoForm.referrerBox.value = window.document.referrer;

// Get date and time info and change the value of the appropriate
hidden form fields

var date = new Date();
var day = date.getDate();
if (day < 10){
day = "0" + day;
}
var month = date.getMonth() + 1;
if (month < 10){
month = "0" + month;
}
var year = date.getFullYear();
document.infoForm.dateBox.value = day + "/" + month + "/" + year;

var startTime = new Date();
var hour = startTime.getHours();
if (hour < 10){
hour = "0" + hour;
}
var minute = startTime.getMinutes();

 155

if (minute < 10){
minute = "0" + minute;
}
var second = startTime.getSeconds();
if (second < 10){
second = "0" + second;
}
document.infoForm.startTimeBox.value = hour + " : " + minute +
" : " + second;

// Get the current time in milliseconds.

now = new Date();
startTiming = (now.getTime())
}

function endForm(){

// Get the current time and add to the appropriate form field

var endTime = new Date();
var hour = endTime.getHours();
if (hour < 10){
hour = "0" + hour;
}
var minute = endTime.getMinutes();
if (minute < 10){
minute = "0" + minute;
}
var second = endTime.getSeconds();
if (second < 10){
second = "0" + second;
}
document.infoForm.endTimeBox.value = hour + " : " + minute + " :
" + second;

// Get the current time in milliseconds, subtract the start time
obtained by the first function from this end time and add the
result to the form field

now = new Date();
endTiming = (now.getTime());
timeTaken=Math.round((endTiming-startTiming)/1000);
document.infoForm.completionTimeBox.value = timeTaken + " Secs";

// Produces alert box to show the contents of the hidden boxes at
submission - delete from final version
alert("browserNameBox.value = " +
document.infoForm.browserNameBox.value +
"\rbrowserVersionBox.value = " +
document.infoForm.browserVersionBox.value +
"\rbrowserPlatformBox.value = " +
document.infoForm.browserPlatformBox.value +
"\renabledCookiesBox.value = " +

 156

document.infoForm.enabledCookiesBox.value +
"\rscreenSizeBox.value = " +
document.infoForm.screenSizeBox.value +
"\rreferrerBox.value = " + document.infoForm.referrerBox.value +
"\rdateBox.value = " + document.infoForm.dateBox.value +
"\rstartTimeBox.value = " + document.infoForm.startTimeBox.value
+
"\rendTimeBox.value = " + document.infoForm.endTimeBox.value +
"\rcompletionTimeBox.value = " +
document.infoForm.completionTimeBox.value);

// Return true to the form to allow submission to proceed
return true;

}

</script>

</head>

<body onload = "startForm()">
<form name="infoForm" action="" method="post" onSubmit="return
endForm();">

<div class="ques">
<p>The form begins here</p>
<p> </p>
<p>Add your questionnaire questions here...</p>
<p> </p>
<p>The hidden boxes are placed below (See page source). In this
example, alert
boxes have been added to show the contents of the boxes when the
page is
submitted so that the effect of the script can be observed and
checked.
You should delete the sections of the script that produce these
alert boxes
from the final version of the form.</p>

<input name="browserNameBox" type="hidden" />
<input name="browserVersionBox" type="hidden" />
<input name="browserPlatformBox" type="hidden" />
<input name="screenSizeBox" type="hidden" />
<input name="enabledCookiesBox" type="hidden" />
<input name="referrerBox" type="hidden" />
<input name="dateBox" type="hidden" />
<input name="startTimeBox" type="hidden" />
<input name="endTimeBox" type="hidden" />
<input name="completionTimeBox" type="hidden" />

<p>
<input name="submit" type="submit" value="SUBMIT"/>
</p>
<p> </p>

 157

<p>If you are using validation code in a function called by the
onSubmit event
handler (see the 'Form validation' section), the
<code>endForm</code> function can
be called from within this validation function. If the validation
routine
finds that the form is ready to be submitted it will <code>return
true</code>
to the form to allow submission to proceed. By adding
<code>endForm()</code>
to call the function directly before the <code>endForm()</code>
syntax,
the hidden form fields will be changed before the final
submission. </p>
<p>The final section of the validation code will thus be </p>
<div class = "codeborder">
<p><code> endForm()</code>;

<code> endForm()</code>;</p>
</div>
<p>rather than simply </p>
<div class = "codeborder">
<p><code> return true</code>;</p>
</div>
<p></p>
<p>Select the following link to see a web
form with
the information gathering functions combined with validation
routines.</p>
</div>

</form>
</body>
</html>

Combining data gathering with validation

If you are using validation code in a function called by the onSubmit event handler, the
endForm function cannot be called from within the form at the same time. Instead, it should
be called from within the validation function itself.

If the validation routine finds that the form is ready to be submitted it will return true to
the form to allow submission to proceed (see the 'Form validation' section). By adding
endForm() to call the function before the return true syntax, the hidden form fields will
be changed before the final submission.

The final lines of the section of the validation code that deals with successfully completed
forms will thus be

 endForm();
 return true;

rather than simply

 158

 return true;

The following HTML and code can be used to create a web form with the information gathering
functions combined with
validation routines:

<html>
<head>
<title>Exploring ORMs | Example of validating multiple form
elements</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1">
<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
@import url(../generic/main.css);
</style>
<script language="javascript" type="text/javascript">

// Set variables

// Variable for whether submit has been pressed

var submitPressed = false;

// Variable for each question

var q1Answered = false;
var q2Answered = false;

// Variable for the final alert box message

var alertMessage = "";

// start function

function checkForm(form) {

// Check question 1 - If the box is empty, the question has not
been answered. In this case, add the question number to the
message that will be delivered to the user to indicate that there
are problems with certain questions.

if (form.namebox.value ==""){
alertMessage = "1 ";
}

// If the box is not empty, the question has been answered, so
the 'q1Answered' variable is changed to 'true'.

else{
q1Answered = true;
}

// Check question 2 - If any of the buttons have been selected,
change 'q2Answered' variable to 'true'.

 159

for (var i = 0; i<form.often.length; i++){
if (form.often[i].checked == true){
q2Answered = true;
}
}

// If 'q2Answered' is still false, the question has not been
answered, so add the question number to the message.
if (q2Answered == false){
alertMessage = alertMessage + "2 ";
}

// If both questions have been answered (q1Answered and
q2Answered are both true) or if the user has already tried to
submit once before (submitPressed is true), provide the user with
a thank-you alert and return 'true' to the form to allow
submission to proceed.

if (submitPressed == true || (q1Answered == true && q2Answered ==
true)){
alert("Thank you for completing the form.");
form.namebox.value =""
submitPressed = false;
q1Answered = false;
q2Answered = false;
alertMessage = "";
// Call the endForm() function to collect timing information
before the form is submitted.
endForm();
return true;
}

// If either or both of the questions has not been answered,
deliver an alert box message to the user and include the variable
'alertMessage' which was used to collect the numbers of the
unanswered questions. Change the textboxSubmitPressed variable to
true to allow submission to proceed next time and return 'false'
to the form to prevent submission this time.

else {
alert("Please check your answers to the following
question(s):\n\r" + alertMessage + "\n\rIf you are happy with
them, press the submit button again to proceed with the
submission.");
submitPressed = true;
return false;
}
}

function startForm(){

// Change the value of the hidden input fields that contain
information gathered when the form is loaded

 160

document.infoForm.browserNameBox.value = navigator.appName;
document.infoForm.browserVersionBox.value = navigator.appVersion;
document.infoForm.browserPlatformBox.value = navigator.platform;
document.infoForm.enabledCookiesBox.value =
navigator.cookieEnabled;
document.infoForm.screenSizeBox.value = screen.width + " x " +
screen.height;
document.infoForm.referrerBox.value = window.document.referrer;

// Get date and time info and change the value of the appropriate
hidden form fields

var date = new Date();
var day = date.getDate();
if (day < 10){
day = "0" + day;
}
var month = date.getMonth() + 1;
if (month < 10){
month = "0" + month;
}
var year = date.getFullYear();
document.infoForm.dateBox.value = day + "/" + month + "/" + year;

var startTime = new Date();
var hour = startTime.getHours();
if (hour < 10){
hour = "0" + hour;
}
var minute = startTime.getMinutes();
if (minute < 10){
minute = "0" + minute;
}
var second = startTime.getSeconds();
if (second < 10){
second = "0" + second;
}
document.infoForm.startTimeBox.value = hour + " : " + minute +
" : " + second;

// Get the current time in milliseconds.

now = new Date();
startTiming = (now.getTime())
}

function endForm(){

// Get the current time and add to the appropriate form field

var endTime = new Date();
var hour = endTime.getHours();
if (hour < 10){
hour = "0" + hour;

 161

}
var minute = endTime.getMinutes();
if (minute < 10){
minute = "0" + minute;
}
var second = endTime.getSeconds();
if (second < 10){
second = "0" + second;
}
document.infoForm.endTimeBox.value = hour + " : " + minute + " :
" + second;

// Get the current time in milliseconds, subtract the start time
obtained by the first function from this end time and add the
result to the form field

now = new Date();
endTiming = (now.getTime());
timeTaken=Math.round((endTiming-startTiming)/1000);
document.infoForm.completionTimeBox.value = timeTaken + " Secs";

// Produces alert box to show the contents of the hidden boxes at
submission - delete from final version
alert("browserNameBox.value = " +
document.infoForm.browserNameBox.value +
"\rbrowserVersionBox.value = " +
document.infoForm.browserVersionBox.value +
"\rbrowserPlatformBox.value = " +
document.infoForm.browserPlatformBox.value +
"\renabledCookiesBox.value = " +
document.infoForm.enabledCookiesBox.value +
"\rscreenSizeBox.value = " +
document.infoForm.screenSizeBox.value +
"\rreferrerBox.value = " + document.infoForm.referrerBox.value +
"\rdateBox.value = " + document.infoForm.dateBox.value +
"\rstartTimeBox.value = " + document.infoForm.startTimeBox.value
+
"\rendTimeBox.value = " + document.infoForm.endTimeBox.value +
"\rcompletionTimeBox.value = " +
document.infoForm.completionTimeBox.value);

// Return true to the form to allow submission to proceed
return true;

}
</script>

</head>

<body onload = "startForm()">

<form name="infoForm" action="" method="post" onSubmit="return
checkForm(this);">

 162

<div class="ques">

<p>1. What is your name?</p>

<p><input type="text" name="namebox" /></p>

<p>2. How often do you use the internet?</p>

<p>
<input type="radio" name="often" value="everyday" />
everyday

<input type="radio" name="often" value="2-3 days per week" />
2-3 days per week

<input type="radio" name="often" value="4-5 days per week" />
4-5 days per week

<input type="radio" name="often" value="6-7 days per week" />
6-7 days per week

<input type="radio" name="often" value="less than once a week" />
less than once a week</p>
<p>The hidden boxes are placed below (See page source). In this
example, alert
boxes have been added to show the contents of each box when the
page is
loaded and submitted so that the effect of the script can be
observed and
checked. You should delete the sections of the script that
produce these
alert boxes from the final version of the form.</p>
<input name="browserNameBox" type="hidden" />
<input name="browserVersionBox" type="hidden" />
<input name="browserPlatformBox" type="hidden" />
<input name="screenSizeBox" type="hidden" />
<input name="enabledCookiesBox" type="hidden" />
<input name="referrerBox" type="hidden" />
<input name="dateBox" type="hidden" />
<input name="startTimeBox" type="hidden" />
<input name="endTimeBox" type="hidden" />
<input name="completionTimeBox" type="hidden" />
<p><input type="submit" name="Submit" value="Submit" /></p>

</div>

</form>
</body>
</html>

Dealing with non-JavaScript browsers
Providing that testing is carried out to ensure that the JavaScript used will not interfere with
the completion and submission of the questionnaire in non-JavaScript browsers, there will be
no problems for respondents without JavaScript. The hidden form fields will simply be returned
with empty values.

 163

A simple way of gathering the information that JavaScript was not available (and verifying that
empty values are caused by this rather than by any problems with the form or the scripting) is
to include a hidden form field enclosed in <noscript></noscript> tags as follows.

<noscript><input type="hidden" name="JavaScript"
value="unavailable"></noscript>

This will only add the code within the tags in cases where JavaScript is not available so that
the value will only be sent along with the form if this is the case.

Cookies
Setting a cookie to identify when a computer has already been used to submit a questionnaire
is more reliable than using IP addresses. When a user submits the questionnaire, a cookie can
be stored on the hard drive of the computer which will identify the fact that it has been used
to make a submission. Should the same computer be used to access the questionnaire a
second time, action can be taken such as delivering a message or redirecting the user.

However, problems remain in the use of this method to prevent multiple submission as users
can opt to reject cookies or delete them from their hard drive. These examples also depend on
the use of JavaScript which can be disabled in the browser. It should also be remembered that
different participants may be using the same machine to access the questionnaire.

For truly effective access control, a system of access via password is likely to be needed so
that only invited participants with access to a password can participate (see the 'Server-side
processing' section of this technical guide).

Where the researcher does not wish to limit access in this way, however, the use of cookies is
likely to be helpful in highlighting or preventing multiple submissions as the majority of users
are unlikely to have disabled cookies on their machines. The process of identifying when a
computer has already been used to submit a questionnaire using cookies is straightforward.

Examples

In the following examples, a pop-up window with a questionnaire is opened when the user
clicks on a link. When the page is opened, JavaScript is used to check whether or not the
computer has a cookie called "Multiple" saved on it. If it does not, it is assumed that it is the
first time that the computer has been used to access the questionnaire. A cookie called
"Multiple" is then saved to ensure that the first check will establish that the computer has been
used to access the questionnaire if it is subsequently used again.

Each of the examples carries out a different action if the cookie called "Multiple" is found. The
first displays an alert-box message. The second reveals the same message at the top of the
page. The third redirects the user to a new page which explains that the computer has been
used to access the questionnaire before and provides a link to a different version of the
questionnaire.

Explanation

The JavaScript code for the first example is as follows:

<script language="javascript" type="text/javascript">
function checkCookie(){
var found;
if (document.cookie.length>0){

 164

found = document.cookie.indexOf("multiple=");
if (found != -1){
alert("It appears that your computer has been used to access this
questionnaire before. If it was used by you, please do not
complete the questionnaire a second time.")
return;
}

}
setCookie("multiple", "yes", "");
}
function setCookie(name, value, expires){
if (expires ==""){
var now = new Date();
now.setTime(now.getTime() + (1000*60*60*24*365));
expires = now.toGMTString();
}
document.cookie = escape(name) + "=" + escape(value) + "; path
=/" + ";expires=" + expires;
}
</script>

The first function checkCookie() checks whether or not the cookie called "multiple"
has been previously saved to the computer's hard drive. If it has, the alert message is
delivered. If not, the setCookie("multiple", "yes", "") function is called. This
saves a cookie called "multiple" with the value "yes", and sets the expiry date for the
cookie to 1 year from the current date (1000*60*60*24*365) which is the number of
hours (1000*60*60) multiplied by the hours in a day and the days in a year (24*365).

The checkCookie() function is then called when the body of the page loads using the
onload event handler:

<body onload="checkCookie();">

The code for the other examples is similar, but the action that occurs when the cookie called
"multiple" is found is different.

For the second example, a function called showMessage('multiple')is called which
shows the hidden layer called 'multiple' to reveal the message at the top of the page.
The setCookie() function is the same, but the checkCookie() function changes as
follows:

function checkCookie(){
var found;
if (document.cookie.length>0){

found = document.cookie.indexOf("multiple=");
if (found != -1){
showMessage('multiple');
return;
}

 165

}
setCookie("multiple", "yes", "");
}

The following functions are also added to provide the functionality required to reveal the
message at the top of the questionnaire.

// The message to the participant is delivered by showing or
hiding layers. This is done differently according to the type of
browser the participant is using. This block of code checks the
type of browser

var isIE4 = false;
var isCompliant = false;
if(document.getElementById){

if(!document.all)
{
isCompliant=true;
}
if(document.all)
{
isIE4=true;
}

}

// Code to allow the hidden layer used to deliver the messages to
be made visible. A different method is used according to the type
of browser identified in the previous block of code.

function aLs(layerID){
var returnLayer ="null";
if(isIE4){

returnLayer = eval("document.all." + layerID + ".style");
}

if(isCompliant){

returnLayer = eval("document.getElementById('" + layerID +
"').style");
}

}
return returnLayer;
}

// Function to make a layer visible when called. The layer name
is fed into the function when it is called.

function showMessage(ID)
{
aLs(ID).display = "";
}

 166

For the third example, a the URL of the page is changed using the code
window.document.location="newpage.htm"; where "newpage.htm" is the link
to the page called when the cookie called "Multiple" is found. The setCookie() function is
the same, but the checkCookie() function changes as follows:

function checkCookie(){
var found;
if (document.cookie.length>0){

found = document.cookie.indexOf("multiple=");
if (found != -1){
window.document.location="newpage.htm";
return;
}

}
setCookie("multiple", "yes", "");
}

This URL "newpage.htm" is automatically loaded if the cookie is found. This page includes a
link to a different version of the questionnaire which can be submitted using a hidden form
field to alert the researcher that the computer had already been used to complete the
questionnaire and prompt him/her to check further (see the 'Adding data to hidden form fields'
section above).

Complete code

The complete HTML and JavaScript for each of the three examples shown in this section can
be seen below. The code can be saved, or copied and pasted into your text editor.

Example 1: An alert box message

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Exploring ORMs | Technical guide | Cookies: Example
1</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />
<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
@import url(../generic/main.css);
</style>

<script language="javascript" type="text/javascript">
function checkCookie(){
var found;
if (document.cookie.length>0){
found = document.cookie.indexOf("multiple=");
if (found != -1){
alert("It appears that your computer has been used to access this
questionnaire before. If it was used by you, please do not

 167

complete the questionnaire a second time.")
return;
}
}
setCookie("multiple", "yes", "");
}
function setCookie(name, value, expires){
if (expires ==""){
var now = new Date();
now.setTime(now.getTime() + (1000*60*60*25*365));
expires = now.toGMTString();
}
document.cookie = escape(name) + "=" + escape(value) + "; path
=/" + ";expires=" + expires;
}
function deleteCookie(){
document.cookie = "multiple" + "=; expires = Thu, 01-Jan-70
00:00:01 GMT" +"; path=/";
}
</script>
</head>

<body onload="checkCookie();">
<div class="ques">

<h1>Welcome to the questionnaire</h1>
<p>1. What is your name?</p>

<p><input type="text" name="namebox" /></p>

<p>2. How often do you use the internet?</p>

<p><input type="radio" name="often" value="everyday"
/>everyday

<input type="radio" name="often" value="2-3 days per week" />2-3
days per week

<input type="radio" name="often" value="4-5 days per week" />4-5
days per week

<input type="radio" name="often" value="6-7 days per week" />6-7
days per week

<input type="radio" name="often" value="less than once a week"
/>less than once a week</p>

<p><input type="submit" name="Submit" value="Submit" /></p>
</div>
</body>
</html>

Example 2: A message appears at the top of the page

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

 168

<head>
<title>Exploring ORMs | Technical guide | Cookies: Example
2</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />
<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
@import url(../generic/main.css);
</style>
<style type ="text/css">
.message {
font-weight: bold;
color: #f00;
}
</style>
<script language="javascript" type="text/javascript">
function checkCookie(){
var found;
if (document.cookie.length>0){
found = document.cookie.indexOf("multiple=");
if (found != -1){
showMessage('multiple');
return;
}
}
setCookie("multiple", "yes", "");
}
function setCookie(name, value, expires){
if (expires ==""){
var now = new Date();
now.setTime(now.getTime() + (1000*60*60*25*365));
expires = now.toGMTString();
}
document.cookie = escape(name) + "=" + escape(value) + "; path
=/" + ";expires=" + expires;
}

var isIE4 = false;
var isCompliant = false;
if(document.getElementById){

if(!document.all)
{
isCompliant=true;
}
if(document.all)
{
isIE4=true;
}

}

 169

function aLs(layerID){
var returnLayer ="null";
if(isIE4){

returnLayer = eval("document.all." + layerID + ".style");
}

if(isCompliant){

returnLayer = eval("document.getElementById('" + layerID +
"').style");
}

}
return returnLayer;
}

function showMessage(ID)
{
aLs(ID).display = "";
}
</script>
</head>

<body onload="checkCookie();">

<form name="form1"><div class="ques">
<div id="multiple" style="display:none">
<div class="message">It appears that your computer has been used
to access
this questionnaire before. If it was used by you, please do not
complete
the questionnaire a second time.</div>
</div>
<h1>Welcome to the questionnaire</h1>
<p>1. What is your name?</p>

<p><input type="text" name="namebox" /></p>

<p>2. How often do you use the internet?</p>

<p><input type="radio" name="often" value="everyday"
/>everyday

<input type="radio" name="often" value="2-3 days per week" />2-3
days per week

<input type="radio" name="often" value="4-5 days per week" />4-5
days per week

<input type="radio" name="often" value="6-7 days per week" />6-7
days per week

<input type="radio" name="often" value="less than once a week"
/>less than once a week</p>

<p><input type="submit" name="Submit" value="Submit" /></p>
</div></form>

 170

</body>
</html>

Example 3: The user is redirected to another page

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Exploring ORMs | Technical guide | Cookies: Example
3</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />
<link href="../generic/nn4.css" rel="stylesheet" type="text/css">
<style type="text/css">
@import url(../generic/main.css);
</style>
<script language="javascript" type="text/javascript">
window.opener.close();
function checkCookie(){
var found;
if (document.cookie.length>0){
found = document.cookie.indexOf("multiple=");
if (found != -1){
window.document.location="cookies3b.htm";
return;
}
}
setCookie("multiple", "yes", "");
}
function setCookie(name, value, expires){
if (expires ==""){
var now = new Date();
now.setTime(now.getTime() + (1000*60*60*25*365));
expires = now.toGMTString();
}
document.cookie = escape(name) + "=" + escape(value) + "; path
=/" + ";expires=" + expires;
}
</script>
</head>

<body onload="checkCookie();">

<form name="form1"><div class="ques">
<h1>Welcome to the questionnaire</h1>
<p>1. What is your name?</p>

<p><input type="text" name="namebox" /></p>

<p>2. How often do you use the internet?</p>

 171

<p><input type="radio" name="often" value="everyday"
/>everyday

<input type="radio" name="often" value="2-3 days per week" />2-3
days per week

<input type="radio" name="often" value="4-5 days per week" />4-5
days per week

<input type="radio" name="often" value="6-7 days per week" />6-7
days per week

<input type="radio" name="often" value="less than once a week"
/>less than once a week</p>

<p><input type="submit" name="Submit" value="Submit" /></p>
</div></form>
</body>
</html>

 172

Server-side processing

Introduction
Once a questionnaire has been designed and created, it is necessary to make it available
online and add a means of collecting and processing the results. Doing this successfully
requires the addition of server-side processes.

This page is designed to provide you with an overview of server-side processing technologies.
It will explain what server-side processing is and how it can be used to collect data from
questionnaires. It will cover the following areas:

• The nature of server-side processing and how it differs from client-side
processing;

• How server-side and client side processing interact when a questionnaire is
requested and submitted;

• An overview of the options for hosting the questionnaire on a server, which will
be needed to make the questionnaire available online;

• An introduction to some of the key technologies required and the options
available:

o Server software: Apache and Microsoft;
o Server-side processing software: CGI, ASP.NET, PHP, ColdFusion

and JSP;
o Database software: MySQL and SQL Server;

• How to set up a test-server on a personal computer to use when developing
using these technologies;

• An overview of how WYSIWYG web editors and other software can be used to
help with the development;

• An outline of common server-side processing tasks that are carried out to
process a questionnaire;

• Links to key resources on each of the server-side processing technologies.

Server-side v client-side processing
To understand how server-side processing works and how it differs to client-side processing, it
is useful to firstly consider what happens when a user successfully calls a web page. The main
steps can be seen as follows:

1. The user types the URL of the webpage into the browser's location bar or clicks
on a link. This URL acts as a reference to the computer on which the webpage is
held (the server) and the location of the file (its name and position inside the
file tree).

2. The browser sends a message over the internet to the server computer
requesting the webpage.

3. Server software (e.g. Apache) on the server computer receives the message.
4. The URL is correct and up-to-date, and there are no problems with the server

computer, so the software is able to locate the file in the computer's hard drive.
5. The software sends a copy of the file back to the browser on the requesting

computer (the client).
6. The browser displays the page according to the HTML and CSS instructions it

contains.

 173

7. Alternatively, if there is a problem with the server or the URL is incorrect, an
error message is displayed by the browser on the client machine.

This can be shown diagrammatically as follows:

The interaction between the client and the server when a user requests a web page

The files held on the server are 'static' which means that all users who request the webpage
will be delivered exactly the same content from the hard drive. It cannot be altered unless the
developer makes a change to the files and saves them again.

The way that client-side and server-side processing works inside the interaction between client
and server can be seen below. This is followed by an overview of the advantages and
disadvantages of each.

Client-side processing

Where client-side processing is used, effects can be added which may change the look or
content of the webpage. For example, JavaScript can be added to check for the presence of a
cookie indicating that a user has visited the site before. If a cookie is found, an alternative
message can be displayed. Alternatively, users can display or hide content such as help
windows or menu bars by clicking on buttons or links. However, the content delivered by the
server is always the same. Like the CSS and/or HTML it is included with, the JavaScript is
'static' and is delivered within a static page. The processing that takes place occurs through
instructions to the browser on the client machine. This can be seen in the following diagram:

The interaction between the client and the server when a user requests a web page containing client-side processing

Server-side processing

Unlike the case of static websites, a typical use for server-side processing is to deliver
'dynamic' content to users according to choices they make before requesting the page. Thus,
two visits to the same page may result in completely different content being delivered. For
example, users of a bookstore site may search for particular types of books and be delivered
only the results that are relevant to the search. Alternatively, server-side processing can be

 174

used to detect information about users' computers such as screen size, type of browser or
whether JavaScript is enabled, and then to send out a different page accordingly. The client
computer receives the webpage from the server in exactly the same way as described above,
but processing takes places to create the content of a particular page before it is sent back to
the client. This may include interaction with a database to 'collect' content for display. This can
be seen in the following diagram:

The interaction between the client and the server when a user requests a web page containing server-side processing

Advantages and disadvantages

Advantages of server-side processing

The main advantage of server-side processing is that it is not dependent on the client
computer. It will take place regardless of the type of browser used as it occurs on the server
before the page is delivered. This means that the use of server-side processing is not likely to
reduce the accessibility of a webpage as the functionalities it provides should work on all
platforms and with any browser. On the other hand, client-side processing depends on the
availability of technologies on the client computer such as a browser which is able to process
JavaScript and which is up-to-date enough to deal with the JavaScript version used. Most
browsers also provide users with an option to deactivate JavaScript. Where the functionality
provided by the processing is essential, server-side processing is thus the only viable option.

Server-side processing also has related security advantages in that it occurs before the page is
delivered and is thus not 'visible' to the end-user, who is only given the results of the
processing. Providing security measures are followed to prevent hacking of the server, these
processes cannot be accessed. However, client-side processes must be delivered to the user
along with the CSS and/or HTML , images and other files that make up the web page. They
can thus be accessed by the user (and potentially misused or manipulated) simply by viewing
the source code. Where password control is required, for example, server-side processing is
the only viable option as the list of acceptable passwords and the process of checking that a
valid password has been entered occurs on the server. If the process was carried out client-
side, viewing the source code would immediately reveal this to the user.

Disadvantages of server-side processing

The main disadvantage of server-side processing is that it has the potential to reduce the
speed and efficiency of a webpage. Every time a process needs to be carried out based on
user input or actions, a call must be made to the server and the results delivered back to the
client. In cases where the functionalities provided by processing are not essential and where
there are no security implications, client-side processing can provide a faster and more
seamless experience for the user. Thus, for example, the drop-down headings used by this site
are activated client-side which adds an 'extra' functionality to the site but which is not
essential to accessing the information the headings contain. Using server-side processing for
such features would be impractical and slow, and if the user does not have a browser with
client-side functionalities this will not affect accessibility.

 175

Server-side processing also obviously requires access to a server which can deal with the
processing technology chosen, along with adequate permissions to add scripts and/or
databases to this server. Where this is not available, it may be necessary to use client-side
processing, or to rethink whether the functionality should be added.

Server and Client-side processing within a questionnaire
In delivering, receiving and processing a questionnaire, the main steps in the interaction
between server and client are typically as follows:

• The browser on the client computer requests the webpage containing the
questionnaire from the server, receives the questionnaire and displays it on the
page (see details in stages 1-6 above).

• Extra information such as the date and time, and details about the participant's
computer are collected and placed in hidden form fields using client-side and/or
server-side processes (see 'collecting participant information'.

• The participant completes and submits the questionnaire and if JavaScript is
available in the participant's computer, client-side validation occurs to check the
responses (see 'Form validation').

• If JavaScript is available and there are problems with the form, submission is
prevented and a message is displayed to highlight what the problems were
(return to step 3).

• If JavaScript is deactivated in the participant's computer or the answers have
been entered correctly, submission goes ahead and the contents of the form
fields in the questionnaire are sent to the server (along with any extra
information in the hidden form fields).

• Server-side validation routines are carried out to check for problems with the
form.

• If the answers have been entered correctly, a thank-you message is displayed
and server-side processes are carried out to add the answers to a database or
text-file, and/or include them in an email to be sent to the researcher.

• If the server-side validation reveals a problem with the form, it is returned to
the participant with the answers preserved and messages to highlight what the
problems were. The participant corrects the problems (if so inclined) and
resubmits (return to step 3).

Both server and client-side processing are used to process the questionnaire. Client-side
processing is used for validation as it will provide improved usability and speed to those who
have JavaScript available on their computers, but will not reduce accessibility for those who do
not. Server-side processing is used to deal with the results and also to provide 'back-up'
validation where JavaScript is unavailable or where users may have deactivated it to avoid
validation.

Hosting options
A number of technologies are available to add server-side processing functionalities to web
pages, but whichever technology is chosen, the questionnaire will need to be uploaded to a
server along with the required databases and/or scripts. The choice of which technology to use
is likely to depend primarily on the type of server and software available and the level of
access the researcher has to this server.

The following three hosting options are likely to be available to researchers who wish to create
and upload their own questionnaires:

 176

Access to server space on an institution's server

For researchers working within an institution such as a university, a government department,
an NHS trust, or a charitable organisation, it may be possible to upload the questionnaire to
the institution's server. In this case it will be necessary to find out what type of processing and
database software can be used, and whether there are any limitations or conditions on how
they can be used. It may be that certain types of scripts are not allowed or that time is
needed for computer services to check any scripts before they are uploaded. In some cases,
access to the server may only be possible if standard procedures for implementing web forms
are followed. For a questionnaire with 'standard' requirements, this should not be a problem
but it may be necessary to check issues such as whether the results can be accessed in the
required format or whether they can be emailed, automatically added to a database, or both.

Use of a commercial internet hosting service

If a researcher does not have access to a server or if the level of control over what can be
done and how is not adequate, it may be necessary to use a commercial hosting service.
There is a huge range of options available at a range of prices. There are many free services
available, but access to server-side processing capabilities and a database is likely to only be
available through services which charge. If a free service is found that seems to offer the
required functionalities it is also important to check whether advertisements are included and,
if so, whether this is acceptable.

Services that charge can range from relatively inexpensive options which run a number of
websites on a single server, to more expensive options with servers dedicated to a particular
customer and frequently targeted at the business world. When choosing a provider, it is
important to be clear on what the requirements are in terms of file space and available
features to make comparison easier and to find a good value provider. It is also important to
be aware that there may be limits of the capabilities that are offered and that, for example,
some services may only allow standard scripts to be used, rather than allowing users to upload
their own scripts. Depending on what is required, this may not be a problem, but it important
to check when deciding which service to use. Asking for recommendations from friends and
colleagues who use a hosting service, or checking review sites on the internet may help in
finding a suitable service.

Use of a personal web server

If the researcher has a broadband-connected computer which has a permanent IP address and
which is permanently connected to the internet, it may be possible to use the computer as a
server on which to host the questionnaire. This will allow complete freedom over the
technologies used and the server-side processing added and may prove to be a suitable
solution for researchers with high-level system administration and scripting skills who wish to
create a questionnaire with advanced functionalities. However, for most questionnaires, this is
unlikely to be needed. Running a pubic website from a personal server is also a difficult task
and is not recommended for those without the knowledge and experience to ensure that the
server is set-up properly, has adequate disc-space to deal with the traffic received, and is
secure. For a questionnaire hosted in this way, it will also be necessary to ensure that the data
collected is archived regularly and held securely. If hackers find a way to access the server,
not only will the questionnaire data be potentially compromised, but the server could then also
be used to attack other servers over the internet.

Use of a personal web server

When choosing a hosting option, it is important to consider the URL the questionnaire will have
when it is made publicly available. It may be necessary to choose and acquire a specific
domain name for the questionnaire. Information about domain names is provided below.

 177

If an institution's server is used, the URL of the questionnaire is likely to be within the file tree
of the institution and/or department's website. Thus, it will have a URL which automatically
includes a reference to the institution, such as the following:

htttp://www.university.ac.uk/research/questionnairename.html

This is likely to enhance participants' view of the legitimacy of the research.

If a commercial internet hosting service is used, many hosting services offer the possibility of
having a site name as a sub site within the host's own domain name. In this case, the URL
would be something like:

htttp://www.myhostingcompany.com/questionnairename/intro.html

In either case, if the researcher wishes to have a specific URL for the questionnaire, it will be
necessary to pay for a domain name under which the questionnaire can be made available. It
will also be necessary to acquire a domain name if a personal server is used so that the
questionnaire can be made available online through its own URL.

Typically domain names are registered for 1-2 years for a registration fee which gives the
holder sole rights to use the name. This is done through registry services, such as Nominet
(http://www.nominet.org.uk/), which is the registry for UK domain names. The site includes a
facility to search for 'unclaimed' domain names which can then be registered. Most hosting
company sites also include this facility and offer to register domain names on their clients'
behalf either as part of a hosting package or as a stand-alone service.

Once the domain name has been acquired, it is possible for the hosting server to be set to
deliver the questionnaire in response to requests to this domain over the internet. This will
make it possible for the questionnaire to have a bespoke URL, e.g:

htttp://www.researchproject.net

Where the researcher is affiliated to an institution but the questionnaire is not hosted on the
institution's server, however, adding a link to the researcher's page on the institution's website
and including a graphic of the institution logo is likely to be necessary for research legitimacy.

An informative, though perhaps not entirely impartial, introduction to hosting is available on
the W3Schools website at the following address:

http://www.w3schools.com/ hosting/default.asp

Server software
The server software handles requests for webpages from the server and also handles the
interaction with server-side processing technologies and databases. In many cases, the choice
of which server-side technology can be used depends on the server software that is installed.
This, in turn, often depends on which operating system is in use on the computer (e.g.
windows or linux). The most popular server software in use on the internet is Apache which is
a free open-source option which can be used on both operating systems. Microsoft server
software is also a commonly-used example, available for use on the Windows operating
system and other server software is also available. Most hosts are likely to use one of these
two options, though other server software is available. It is likely to be important to find out
which operating system and server software are used, so that the researcher can set up a
similar development environment on a personal computer to create and test the questionnaire
before uploading it. Where a researcher wishes to use a particular type of software this will
also be a key consideration when choosing a hosting service.

 178

Server-side technologies
A number of technologies are available to allow server-side processing to be added to web
pages. Some of the technologies are open-source and freely available for both development on
a local computer and for use with servers to host public websites. The proprietary technologies
are frequently also available free of charge as 'development' versions which can only be run on
local machines. However, they can be expensive to buy where they are to be used with
servers to host open websites. Where a researcher wishes to use this software, it will be
necessary to check that it is available on the hosting server.

It is necessary to find out which operating system and server software is used by the host,
and to find out which server-side processing technologies are supported. This will allow the
decision on which technology to use to develop the questionnaire to be made. Where a
researcher wishes to use a particular technology, it will also allow a hosting service offering
this technology to be chosen. Commonly-used examples of server-side processing
technologies are introduced below, and links to the official websites for each are also given.

CGI

CGI (Common Gateway Interface) is a set of rules for interaction between a server and a
server-side program rather than a scripting language. Typically PERL is the language used to
develop scripts for use with CGI. CGI is the oldest server-side processing technology available
on the internet, and though it has largely been superceded by more efficient alternatives, it
remains a popular choice. One of the key advantages of CGI is that ready-made scripts are
often available online which may provide all the functionalities required to process a
questionnaire without the need to develop programming skills.

http://www.w3.org/CGI/

PHP

A freely-available open-source server-side scripting language which can be downloaded and
installed to allow the addition of server-side processing capabilities to web pages. Rather than
existing separately from an HTML document, PHP scripts are embedded into web pages and
are thus more efficient. PHP is designed to work simply and easily with database technologies,
and it is frequently used in combination with the open-source database software MySQL. It is
generally installed as an Apache module so that the Apache server software is effectively
extended to include PHP functionality for the optimum performance. It can also be used with
Microsoft servers.

http://www.php.net/

Microsoft ASP/ASP.NET

ASP is a framework developed by Microsoft for providing server-side processing capabilities
and database functionalities which has largely superceded by a more recent version, ASP.NET
(though ASP remains widely used at the time of writing and a wide range of resources are still
available on the internet to help developers who use ASP). ASP.NET makes use of ready-made
web controls to allow functionalities such as straightforward database integration or standard
form validation routines to be added to web pages. The use of ASP.NET typically requires the
use of a Microsoft server and operating system. Free downloads of suitable server software to
allow pages to be developed and tested on a local machine are usually available, along with
free development tools such as a basic version of the Visual Web Developer or the free
WYSIWYG Web Matrix software.

http://www.asp.net/

 179

Macromedia ColdFusion

ColdFusion allows server-side processes to be added to webpages through the inclusion of
ColdFusion Markup Language, a scripting language consisting of a range of tags. These tags
effectively allow common server-side tasks such as sending emails or working with databases
to be created through the addition of single tags, and it is often considered to be a relatively
straightforward technology to learn for those with some understanding of HTML. ColdFusion
can be used on a wide range of servers, but the software is less commonly used than some of
the other server-side technologies. It is proprietary to Macromedia and is only available free of
charge as a development version which can only be used on a local machine or for a limited
trial period in the case of the full software.

http://www.macromedia.com/software/coldfusion/

JavaServer Pages (JSP)

Like PHP, ASP.NET and ColdFusion, JavaServer Pages consist of code added to the HTML
document. In this case, Java code is embedded in the document which is activated when the
page is requested. The use of JSP depends on downloading the appropriate software, namely
the Java Development Kit and a JSP/Servlet engine such as Tomcat.

http://java.sun.com/products/jsp/

The 'Resources' section below contains references and links to introductory information and
tutorials on the use of these technologies, and to resources on the use of these technologies to
perform common questionnaire processing tasks.

Database software
Where the intention is to use server-side processing technology in combination with databases
it will be necessary to choose an appropriate example of database software. As with the
server-side technology, a major influence on this choice is likely to be the type of database
available on the hosting server, though where a researcher wishes to use a particular type of
software, this will be one of the key issues in selecting a service provider.

A wide range of database software is available that can be integrated with server-side
processing. The high-end databases such as Oracle, Informix or Sybase may be a suitable
solution for complex research projects with adequate funds available for the purchase.
However, in most cases, the two most common options are likely to be Microsoft's SQL server
for use with ASP.NET, or MySQL for use with the other server-side technologies and with PHP
in particular.

Setting up a development environment
Once it has been established what technologies are to be used, it is possible to download,
install and configure the software needed to develop and test the questionnaire. This process
will be different depending on the technologies chosen, but will typically involve the following
stages:

1. Download/purchase and install the server software, following the installation
instructions provided.

2. Test that the server is working correctly on the local machine. Some server
software (e.g. Apache) will include a test page with the download. This will be
saved in the root of the directory used by the server to hold the webpages
which it will deliver. In the case of Apache, this will typically be the htdocs
directory in the Apache program files on the hard drive (e.g. C:\Program
Files\Apache Group\Apache2\htdocs). If no test page is available with a
particular server, or if the researcher wishes to carry out a further test, an

 180

alternative test page (e.g. an HTML page with a name such as 'testing.html')
can also be created and saved in this directory. The URL can then be typed into
a web browser to view the page. This is typically 'http://localhost/'when the
server is running on a local machine (e.g. 'http://localhost/testing.html'). If the
installation has been successful, the test page will be displayed.

3. Download/purchase the server-side processing and database technologies to a
suitable directory (e.g. if installing PHP, this should be downloaded to a file
called php on the root of the hard drive).

4. Configure the server software, the server-side processing technology and the
database software to allow them to work together. This can be quite a complex
process requiring settings and/or configuration files to be altered, and it is
important to refer to up-to-date guidance (see below).

5. Create a test database and a test page including a connection to this database.
Save this in the root directory used by the server and access it through the
browser to check that the page is displayed successfully, indicating that the
software is interacting correctly (see point 2).

When carrying out this process, it is important to refer to detailed and up-to-date guidance
specific to the particular technologies used. Most training books on particular software will
include a step-by-step guide to installation and configuration on different platforms (see the
'Resources' section below). When choosing a book, it is important to check that this
information is provided for the software versions and platform you wish to use. Guides are
also available on the internet.

Using software tools
A number of tools are available to assist in the development web pages with server-side
processing capabilities. The use of WYSIWYG web editors can simplify and automate many of
the common tasks involved in producing a questionnaire processed server-side, such as
validation routines or connecting to databases, and other tools are available to help with the
creation of scripts or the administration of databases.

Macromedia Dreamweaver is a commonly-used WYSIWYG editor which offers support to users
who are developing server-processed webpages. Through Dreamweaver, it is possible to set
up an environment for developing pages using all of the most common server-side
technologies including those mentioned above. Once this is done, tools are available within the
package to allow functionalities to be automatically added such as database connections,
validation or password access. If the user has a knowledge of the chosen technology and
wishes to create different functionalities, tools such as tag choosers can also provide
assistance with coding in the chosen language.

Microsoft FrontPage is another WYSIWYG editor which allows the development of features such
as validation of form data client and server-side, sending form results to an MS Access
database or connecting to an alternative external database. This can be done with little or no
knowledge of server-side processing using dialogue boxes within the editor. However, taking
advantage of this requires that the server the questionnaire will be hosted on allows the use of
FrontPage extensions, a proprietary Microsoft technology. If you have a knowledge of the
editor and a server which allows this, however, it can dramatically simplify the process and
reduce the need to spend time learning about new technologies or developing programming
skills.

Where ASP.NET is the chosen technology for implementing the questionnaire, development
tools such as the Microsoft Visual Web Developer are available to provide a drag-and-drop
interface for page creation and to simplify the creation of code and integration with databases.
The free WYSIWYG Web Matrix software is also available from Microsoft for the development
of these pages.

Finally, a number of tools are available to make the production of PHP code and the creation
and administration of MySQL databases easier and more intuitive. Like PHP and MySQL, these

 181

tools tend to be available open source and can be found by searching open-source repositories
(See the 'Resources' section for example of these repositories).

Adding the server-side processing functionalities
Once the software and technologies used have been established, and the development
environment has been set up accordingly, the pages and scripts can be developed to add
server-side processing facilities to the questionnaire. In some cases, if a questionnaire has
already been developed, it may be necessary to adapt the HTML to suit the server technology
used. Thus, for example, if ASP.NET is used, the HTML form elements may need to be
replaced with the ready-made web controls available with this technology.

Common server-side processing tasks are as follows:

• Validation, which should be added as a back-up to client-side validation.
Facilities also need to be added to send a thank-you message on submission
where no problems are found, or for the questionnaire to be redisplayed when
errors are found (this should be done so that error messages highlight the
problem, while the answers a participant has already entered are preserved);

• Emailing results, which may be the preferred method of processing the results
as it is straightforward and easy to implement. The emails can also be
encrypted to increase the security of sensitive data. Where a database is used,
the researcher may also wish for the results to be emailed at the same time as
they are added to the database.

• Automatically adding submitted data to a database, so that responses are
added to the database on submission of the form;

• Adding a system of password access, so that only invited participants with
access to a password can access the questionnaire and so that multiple
submission using the same password is prevented;

• Working with multi-page forms, to pass the information gathered from page
to page, or to submit each page when it is completed and then prevent
participants going back and resubmitting these pages.

A wide range of books are available on the use of server-side processing technologies, along
with websites offering tutorials and scripts. A number of suggestions for each of the main
technologies is provided in the 'Resources' section below. This includes links to useful sources
of information, tutorials and examples on how the common questionnaire processing tasks
outlined above can be developed using these technologies.

Resources

General

Books

A good source of information is through the websites of key publishers in the field of web
development. These include the following publishers:

O'Reilly
http://www.oreilly.com/

Peachpit Press
http://www.peachpit.com/index.asp

SAMS
http://www.samspublishing.com/index.asp

 182

These sites offer facilities to search for titles related to particular technologies and also offer
sample chapters and articles. They also offer access to Safari Bookshelf, which is one of the
most convenient access points for books on these technologies online. It offers searchable
access to the titles of these and other key publishers in the field for viewing onscreen or for
downloading.

Other publishers which are not included in Safari Bookshop offer similar searchable websites
and online access to their catalogues, e.g:

WROX
http://www.wrox.com/WileyCDA/

Apress
http://www.apress.com/

Websites

W3Schools
http://www.w3schools.com/
Provides information and tutorials on a range of server-side technologies including ASP, PHP,
SQL, and ASP.NET.

Webmonkey
http://www.webmonkey.com/
General web-design resource. The programming section of the 'How-to library' includes
tutorials on ASP, PHP, ColdFusion, and Perl/CGI.

PHP/MySQL

Books

Coggeshall, J. (2005) PHP Unleashed. Indianapolis. SAMS.

Kent, A., and Powers, D. (2004) PHP Web development with Macromedia Dreamweaver MX
2004. Berkeley, CA. Apress.

Naramore, E., Gerner, J., Le Scouarnec, Y., Stolz, J. and Glass, M. K. (2005) Beginning
PHP5, Apache, and MySQL Web Development. Indianapolis. WROX.

Sklar, D. (2004) Learning PHP. Sebastapol, CA. O'Reilly.

Sklar, D. and Trachtenberg, A. (2003) PHP Cookbook. Sebastapol, CA. O'Reilly.

Ullman, L. (2005) PHP and MySQL for Dynamic Web Sites. Berkeley, CA. Peachpit Press.

Welling, L and Thomson, L. (2004) PHP and MySQL Web Development. Indianapolis. SAMS.

Zandstra , M. (2005) Teach Yourself PHP in 24 Hours, 2nd Edition. Indianapolis. SAMS.

Websites

Codewalkers
http://codewalkers.com/
Offers a wide range of reources on PHP and MySQL including tutorials

PHP
http://uk.php.net/manual/en/introduction.php
An introduction to PHP from the official website which includes a very useful introductory
tutorial.

 183

MySQL Tutorials
http://www.php-mysql-tutorial.com/
A series of tutorials on how to use PHP and MySQL to create and administer databases.

PHP/MySQL Tutorial
http://www.webmonkey.com// programming/php/ tutorials/tutorial4.html
A relatively straightforward introduction to PHP and MySQL, including data validation.

ASP.NET / ASP

The resources below refer to ASP.NET which has been designed to supercede ASP. However,
at the time of writing ASP remains a commonly-used server-side technology and a wide range
of resources are available offering information and tutorials in its use.

Books

Duthie, G. A. and MacDonald, M. (2003) ASP.NET in a Nutshell. Sebastapol, CA. O'Reilly.

Hart, C., Kauffman, J., Sussman, D. and Ullman, C. (2005) Beginning ASP.NET 2.0.
Indianapolis. WROX.

Kittel, M. A. and LeBlond, G. T. (2004) ASP.NET Cookbook. Sebastapol, CA. O'Reilly.

Martinez, J. and Parnell, R. (2003) ASP.NET Development with Dreamweaver MX. Berkeley,
CA. Peachpit Press.

Mitchell, S. (2003) Teach yourself ASP.NET. Indianapolis. SAMS.

Walther, S. (2003) ASP.NET. Unleashed. Indianapolis. SAMS.

Websites

ASP.NET Quickstart Tutorial
http://www.asp.net/ QuickStart/aspnet/ Default.aspx
Detailed tutorials on using ASP.NET including information on how ASP.NET controls are used
with code examples.

4 Guys from Rolla
http://www.4guysfromrolla.com/
Searchable resource with articles and tutorials on specific aspects of ASP.NET.

CGI/PERL

Books

Colburn, R. (2003) Teach yourself CGI. Indianapolis. SAMS.

Guelich, S., Gundavaram, S. and Birznieks, G. (2000) CGI Programming with Perl.
Sebastapol, CA. O'Reilly.

Websites

CGI Programming 101
http://www.cgi101.com/
Tutorials aimed at beginners with information on how to set up a development environment
using CGI/PERL and how to process forms and write data to files.

CGI Made Really Easy - or, Writing CGI scripts to process Web forms
http://www.jmarshall.com/easy/cgi/
Basic introduction to collecting and formatting information from forms.

 184

Elated
http://www.elated.com/tutorials/ programming/perl_cgi/
Tutorials covering a basic introduction to CGI programming with PERL along with issues such
as validation and emailing.

ColdFusion

Books

Brooks-Bilson, R. (2003) Programming ColdFusion MX. Sebastapol, CA. O'Reilly.

Camden, R., Chalnick, L., Buraglia, A. C. and Forta, B. (2005) Macromedia ColdFusion MX
7 Web Application Construction Kit. Berkeley, CA. Macromedia Press.

DeHaan, J. (2004) ColdFusion Web Development with Macromedia Dreamweaver MX 2004.
Berkeley, CA. Apress.

Mohnike, C. (2003) Teach Yourself Macromedia ColdFusion in 21 Days. Indianapolis. SAMS.

Websites

Macromedia's Support Centre for ColdFusion - Tutorials
http://www.macromedia.com/ support/coldfusion/ tutorial_index.html
A wide range of tutorials. Part of the ColdFusion Support Center which includes resources,
technical notes and a forum.

EasyCFM Tutorials
http://www.easycfm.com/tutorials/ index.cfm?dirView=True
A comprehensive range of ColdFusion tutorials.

JSP

Books

Bergsten, H. (2003) JavaServer Pages, Third Edition. Sebastapol, CA. O'Reilly.

Brunner, R. (2003) JSP: A Practical Guide for Programmers. San Fransisco, CA. Morgan
Kaufmann Publishers.

Holzner, S. (2002) Teach Yourself JavaServer Pages in 21 Days. Indianapolis. SAMS.

Perry, B. W. (2004) Java Servlet & JSP Cookbook. Sebastapol, CA. O'Reilly.

Websites

Caucho JSP Tutorials
http://www.caucho.com/resin-3.0/ jsp/tutorial/index.xtp
Covers topics including form processing and emailing form contents.

JSP Tutorial
http://www.jsptut.com/
Series of tutorials covering the basics of JSP and dealing with forms processing, databases and
emailing. States that users should have a knowledge of HTML and Java.

JSP Olympus
http://www.jspolympus.com/JSP/JSP.jsp
Comprehensive range of tutorials.

 185

Frequently-asked questions

I don't know anything about computers. Will I be able to
set up an online questionnaire?
The simple answer is yes. There are a number of ways that you can set up a questionnaire.
You do not need to be an expert in computers, but you may need to be prepared to spend
some time learning some new skills.

If you do not want to spend a great deal of time doing this, producing the questionnaire
yourself is not likely to the best option. If you are working in an institution, it is a good idea to
check what support is available to you. It may be that there are systems in place which you
can use you get a questionnaire online.

Alternatively you could use one of the many online questionnaire software and hosting
services that are available. These aim to make it possible to get a questionnaire online and
gather results with little or no technical skills. They generally use a forms-based interface to
take you through the whole process of developing and implementing the questionnaire. There
are a wide range of options available for different budgets and with different features, and you
may need to spend some time working out which of the services to choose. The 'Choosing
software' section includes an activity designed to help you to work out what features you will
need for your questionnaire. It will allow you to develop a checklist of features that you can
use when comparing products. The 'Using software' section also provides an outline of the
typical procedure for creating and administering a questionnaire using these products.

The introduction to this 'Technical guide' module provides a detailed overview of the different
methods you can use to implement a questionnaire and the technical skills and knowledge that
will be required depending on the method you choose.

How long will it take me to learn to set up an online
questionnaire?
From a technical perspective, this very much depends on what your experience of web design
is at the outset, what support is available, and what method you choose to get the
questionnaire implemented.

If you are developing a questionnaire yourself and you have little experience of web design,
you will need to spend some time learning about technologies such as HTML and CSS in order
to set up a web form and related pages such as an informed consent page. You can also use
WYSIWYG (What You See Is What You Get) software such as Macromedia Dreamweaver or
Microsoft FrontPage to develop the questionnaire, although an understanding of HTML will help
you with this. You should set aside around 10-20 hours to learn the skills to develop the
questionnaire and ensure it is designed effectively. If you plan to add extra features to your
questionnaire such as validation or the gathering of information about participants' computers,
you should expect to spend at least this time again to learn how this is done. Finally, if you do
not have support to help you to upload the pages to a server and add server-side processes to
validate and deal with the data collected, this is likely to take another 15-20 hours.

Of course any institutional support that may be available (such as an automated service to
email results to the researcher) will reduce this time, but in this case you are likely to need to
spend a couple of hours working through the details of the system to ensure that the
questionnaire you create is suitable and meets any conditions that may be imposed.

If you use on 'off-the-shelf' software and hosting service you should expect to spend an hour
or so finding the right service for you needs and budget and then to spend some time working

 186

out how the software is used to develop the questionnaire and how to use the different options
available. You should have a fully working questionnaire in a few hours.

What equipment will I need?
The minimum equipment you will need to design the web pages for the questionnaire is a
simple text editor, such as notepad for windows, and a browser such as MS Explorer in which
you can test your pages. WYSIWYG (What You See Is What You Get) software such as
Macromedia Dreamweaver or Microsoft FrontPage can also be used to aid the design of the
questionnaire.

You will also need access to a server on which you can upload your questionnaire to make it
available online. Depending on how you choose to process the data, you may also need access
to a database on the server (Alternatively, you may choose to email the results). In most
cases, a simple text editor is also the only thing required for the creation of server-side
processes to deal with the questionnaire data. Depending on the server and the server-side
technologies available to you, however, you may also choose to download software which will
help you to do this. See the 'Server-side processing' section for more information about the
different technologies and software that can be used.

Will I be able to get help from my
University/organisation?
If you are working within an institution such as a university, a government department, an
NHS trust, or a charitable organisation, technical support may be available which may even
extend to the bespoke conversion of a paper-based questionnaire to a web version. If this is
not available, there may also be standard procedures in place for implementing web forms
once they have been created by the researcher. This may, for example, involve a mailing
facility whereby the data is automatically formatted and delivered by email when the form is
submitted. It may also involve a facility allowing the data to be downloaded in an appropriate
format for importing into a statistical analysis, database or spreadsheet package. The
institution may also have purchased a site licence for an off-the shelf survey creation and
administration package which may be suitable for the purposes of the research project, and in
educational institutions in particular, site licences may also have been purchased for
assessment software which may provide the facilities required for the implementation of a
basic questionnaire.

The first step in finding out about these systems is usually to check the institution intranet or
to contact computer services.

Are there any limits to the number of question types I
can have?
In HTML pages, there are five basic forms of form controls for inputting data as follows:

Text box

Check boxes

Yes

 187

No

Maybe

Radio buttons

Yes

No

Maybe

Text area

Insert text here

Select box

Choose an option

Of course, these can be organised in different ways to create different question types. For
example, tables can be used to group radio buttons into grids for Likert scales or semantic
differential questions, as in the following example:

Complete the following statement by choosing the number that most closely
matches your opinion for each row:

The internet is:

 1 2 3 4 5

boring

interesting

difficult

easy

risky

safe

useless

useful

See the 'Web forms' section of this 'Technical Guide' module for further details.

 188

What is the best question type?
There is no simple answer to this question as this is likely to depend on the context of the
research. An activity designed to explore the length of time needed to complete different types
of questions is available in the 'Design issues 2: Content' section of the questionnaires module.

Does it matter what I put in as the default answer?
For check boxes, radio buttons and select boxes, it is possible to specify which of the options
is specified by default as shown below:

Check boxes

Yes

No

Maybe

Radio buttons

Yes

No

Maybe

Select box

Choose an option

In the case of radio buttons and check boxes it is a good idea not to set a default option as it
will be impossible to establish whether or not the option was actively selected by the
participant or whether the question was unanswered. For select boxes, if the default answer is
'Choose an option' as in the example above, this will not be a problem this answer will clearly
indicate non-response.

Is it better to have a single-paged questionnaire or one
that spans multiple pages?
One-page questionnaires are generally easier to implement as they consist of a single web
form which can easily be processed through the submission of this one form. Where the
questionnaire is relatively short and straightforward in terms of structure, this is likely to be
the best option.

However, with longer or more complex forms, attempting the present the entire questionnaire
in one page may lead to problems such as the following:

1. Presenting all questions at the same time may give an impression of greater
length which may discourage participants from proceeding.

2. Opportunities to validate individual questions or smaller groups of questions as
the participant progresses through the questionnaire may be reduced (see the
'Form validation' section). In turn, this may lead to frustration if all questions
are validated at once at the end of the questionnaire.

 189

3. Although skip patterns can be introduced through linking to anchors further
down a page or through instructing participants to skip a question by scrolling
to the next, this may not be the most effective or intuitive method of delivering
the questions.

4. If a participant drops out mid-questionnaire, all data will be lost and there will
be no opportunity for collection of partially-completed questionnaires or for
identification of questions that may be precipitating drop out.

For longer questionnaires, the use of multiple pages can add to the effectiveness of question
delivery, providing clearer routes through the questions and offering the opportunity for a
more sophisticated presentation of skip patterns. For example, links to different sections can
be added which participants can be prompted to select according to the answer to key
questions. However, because all the questions are not made visible, submitted and processed
at the same time, a number of extra aspects must be considered

1. An indication of progress through the questionnaire must be given, either
through the use of a progress bar (see 'Key design issues' section of this guide)
or through structuring the questionnaire into different sections and indicating
the nature of this structure to respondents (see 'design issues 1' in the
questionnaires modules). If this is not done effectively, uncertainty over
progress or a realisation that the indicators of progress are inaccurate, may lead
to frustration and drop out.

2. A decision must be made on whether data should be submitted for processing at
the end of each page, or at the end of the questionnaire. If it is done at the end
of each page, this will allow partially-completed questionnaires to be collected
and any problem questions to be identified, but measures must be taken to
identify or prevent multiple submission of any sections. If it is done at the end
of the questionnaire, it will be necessary to pass information supplied up to a
given point in the questionnaire from page to page.

3. As participants progress through the questionnaire, they may wish to return to
a previous page to review and change answers. Unless measures are taken to
ensure that the data they have already entered is still available when they do
this, it is important to inform them that answers already entered may be no
longer available if they go back. It may also be important to add instructions
not to go back through a questionnaire if each page is to be submitted
individually, or to add validation routines preventing submission a second time.

There is a good chance that my survey group will be
using old computers. Is there anything I should consider?
There are a number of measures that can be taken to ensure that a questionnaire is suitable
for older browsers and equipment. These include maintaining a straightforward design,
avoiding the use of third-party plug-ins such as Macromedia Flash, ensuring it is designed for
accessibility (see question below) and validating the HTML and or CSS used to create it.
However differences in aspects such as the size and appearance of form elements and tables
may remain when viewed on different systems.

It is thus good practice to test pages on as many different browsers and systems as possible,
and as an absolute minimum to install the latest versions of the three most popular browsers
on your desktop and use these to test. Friends and acquaintances with different systems (e.g.
AppleMacs or PCs) and older versions of browsers can also be called on to test for any
problems. Where design problems are found in particular systems and browsers, an attempt
can then be made to change the design to best accommodate them.

It is also possible to collect information about the user's computer and browser alongside the
data from the questionnaire (see the 'Gathering information about participants' section of this
technical guide). This can allow an overview of the technologies available to respondents to be

 190

gained. If it becomes clear, for example, that older or less common browsers are being used
to access the questionnaire, it can be tested on these browsers and redesigned if necessary.

It is also a good idea to test the questionnaire on different screen size settings to ensure that
questions are visible in their entirety and do not require scrolling, to use web-safe colours
which will display consistently on different monitors and to use common fonts and 'font-
families' to ensure that the fonts used will display consistently on different systems.

See 'consistency' part of the 'Key design issues' section of this guide for further information.

How can I make sure my questionnaire can be used by
participants with disabilities?
It is important to design pages to be as accessible as possible and there are a number of
simple steps that can be taken to increase the accessibility of an online questionnaire and its
associated web pages. These can ensure that the contents are accessible to users with a range
of user-agents including text-only and screen reading browsers and other assistive
technologies.

Designing the site to be compliant with standards set out by the World Wide Web Consortium
(W3C) is an important step in ensuring accessibility. The 'Resources' section of this guide
includes a link to W3C's validation tools which allow web pages to be checked for standards
compliance. By uploading a page or entering the URL, the tools will run automated tests and
report on any pieces of invalid markup in the pages.

It is also good practice to separate content from presentation in web pages by using Cascading
Style Sheets (CSS) to add design features (See the 'Introduction to CSS' section of this guide).
Although it should be remembered that this may lead to increased inconsistencies in display
on older browsers, this allows participants to control how the site should be presented. They
can override style information to allow presentational features such as text size, font, colour
and layout to be changed according to need.

Beyond this, the W3C Web Accessibility Initiative guidelines (WAI) includes a wide range of
measures which should be taken to ensure that a website is accessible (http://www.w3.org/
WAI/intro/wcag.php). The guidelines divide these measures into Priority 1, 2 or 3 according to
how essential they are to accessibility. Some key measures that should be taken for
accessibility are shown in the 'Key design issues' section of this guide.

Can I create something that people can fill in on TVs,
mobile phones?
A well-designed questionnaire should be usable on a wide range of web-enabled devices
including TVs, mobile phones and Personal Digital Assistants (PDAs). By designing for
accessibility and separating content from presentation (see question above), you will be able
to make sure that the pages are as accessible as possible to devices such as these as well as
to text-only and screen-reading browsers and other assistive technologies.

 191

Glossary

A

Accessibility

The accessibility of a web page refers to the extent to which users can access the content
regardless of the technology they use and any disability they may have. An accessible web
page is one that is designed to ensure that this is possible through, for example, providing
textual descriptions of graphics used to allow their significance to be described in text-only
browsers or via screen-reading software.

Active server pages (ASP)

A framework developed by Microsoft for providing server-side processing capabilities and
database functionalities. Now largely superceded by a more recent version, ASP.NET.

Apache

Freely-available open-source server software which is one of the most widely-used examples
of server software on the internet.

B

Body

The body section of an HTML document contains the main display content. It is here that text,
images, links, form elements, tables and lists are placed.

Browser

Software which requests resources (mainly web pages) from a server computer and displays
them. An example of client software held on a client machine.

Button

A standard HTML button. Can be linked to JavaScript and perform an action when clicked.

e.g.:

HTML: <input type="button" value = "Standard button" />

 192

C

Check box

Square tags that display a mark when selected and can allow multiple responses.

e.g. A B

HTML: <input type="Check box" name="1" value="A"> A<input
type="Check box" name="2" value="B"> B

Client

The software that allows a computer to request web pages from a server computer and
displays these pages. Also used to refer to the computer on which this software is held.

Client-side scripting

Client-side scripting through scripting languages such as JavaScript allows dynamic or
interactive features to be added to web pages. Code is added to a web page which is executed
in the browser on the client computer. It can be used to, for example, carry out different
actions according to user actions or input.

CSS

CSS (Cascading Style Sheets - also referred to simply as 'Style Sheets') provide a means of
adding design elements to basic HTML pages. For example, using CSS, it is possible to control
the colour, positioning and spacing of objects such as text, links, images and tables.

D

DOCTYPE

A DOCTYPE (document type) definition, known as a DTD should begin an HTML document.
This declares what type of page it is and what language is being used, and it allows the page
to be validated as conforming to Worldwide Web Consortium (W3C) standards.

E

Event handler

An event handler is a piece of code in programming or scripting languages such as JavaScript
that triggers an action when a particular event occurs. Examples of event handles are those
that trigger actions when the mouse is clicked, double-clicked or moved, a key is pressed, or a
page is loaded or unloaded.

 193

F

Form elements/controls

A set of form items that the user can enter data into to be sent to the researcher. Some
commonly-used elements are as follows:

Button, Check box, Select box / drop down list box, Password box, Radio buttons, Text area,
Text box.

Form tags

Form tags mark off the beginning and end of a form. Controls within the form tags are
effectively grouped together so that when a submit button is clicked the data in all the controls
within the form is sent for processing. It is possible to include multiple forms on a page, but
only one form can be submitted at any one time.

Function

A function is a block of code in programming or scripting languages such as JavaScript that
carries out a particular action. In effect the code is not carried out until the function is 'called'
from within the document when a particular event occurs (such as the user clicking a submit
button).

G

Graphic Interchange Format (GIF)

One of the two most common types of images in use on the internet (along with JPEGs), GIFs
are usually more appropriate for line drawings or graphics with a limited number of colours.

H

Head

The head section of an HTML document contains information which is basically not intended for
display. It is loaded into the browser before the body section and typically includes the
DOCTYPE, the page title, meta commands and any CSS and client-side script information.

Hidden form fields

Hidden form fields are form controls that are not displayed on the page (though they are
visible in the HTML source for the page). They are useful for storing and passing information
from page to page which is not necessary or desirable to display. They can be thought of as
text boxes with content that can be set by the developer via HTML or JavaScript rather than
being completed by the user.

HTML

HTML (Hyper Text Markup Language) is the technical language that lies behind most web
pages. It consists of tags which surround blocks of text to indicate how they should appear in
a browser, and which are used to insert elements such as images or tables.

 194

HTML tags

In an HTML document, tags are used to tell the browser how to present the layout and style of
text and other elements. Tags can consist of elements, attributes and values. The element
indicates what should be displayed in the browser, and the attributes and values indicate how
this should be displayed.

e.g. In the following tag, <p align="center">Hello!</p>, <p></p> is the element which
tells the browser to display a new paragraph, align is the attribute and center is the value
which indicates that it should be displayed with a centered alignment.

I

Internet Protocol (IP) Address

A string of four numbers separated by full-stops which provide a unique identifier for all
computers permanently connected to the internet.

J

Joint Photographic Experts Group (JPEG)

One of the two most common types of images in use on the internet (along with GIFs), JPEGs
are usually suitable for images with a large number of colours such as photographs. The file
extension is '.jpg'.

JavaScript

The most popular client-side scripting language in use on the internet. JavaScript code is
added to an HTML document and is executed in the browser on the client computer. It can be
used to, for example, carry out different actions according to user actions or input.

K

L

M

MySQL

A freely-available open source database server, which can be downloaded and installed to
allow database functionality to be added to a web page. It is frequently used in combination
with PHP to allow databases to be added to and accessed over the internet.

N

 195

O

Open source

In general terms, open source software allows for users to access the source code for free and
allows it to be modified and redistributed. A full definition is available at:
http://www.opensource.org/

Optimisation

The process of reducing as much as possible the file size and download time of resources such
as web-graphics while maintaining a suitable level of quality.

P

Password box

Text input box that allows a single line of text to be entered. It is possible to limit the size and
number of characters that can be entered. As the user types, the characters are hidden from
display.

e.g.

HTML: <input type="password" size="15" maxlength="10" />

Path

A reference to a file and it's location in a series of folders held on a computer.

e.g. C:\Documents and Settings\My Documents\main_site\section1\page1.htm
refers to an HTML page called 'page 1' held in the c drive of a local computer in a folder called
section 1, held in a series of folders in 'Documents and Settings'.

PHP

A freely-available server-side scripting language which can be downloaded and installed to
allow the addition of server-side processing capabilities to web pages.

Q

R

Radio buttons

Circular tags that fill in when one option is selected.

e.g. Yes No

HTML: <input type="radio" name="1" value="Yes" / > Yes <input
type="radio" name="1" value="No" /> No

 196

Reset button

A reset button clears any form data that has been input, returning them to the original values
they had when the page was loaded.

e.g.:
Reset

HTML: <input type="reset" value="Reset" />

S

Select box / Drop-down list box

An element which allows users to select options by clicking. Only one option is displayed until
the user clicks on the arrow.

e.g.
Option 1

HTML: <select name="select"> <option>Option 1</option>
<option>Option 2</option> <option>Option 3</option>
<option>Option 4</option> </select>

Server

A computer which delivers web pages to a client computer when a URL is typed into the
address bar of a browser on that computer. Also used to refer to the software held on the
server computer which allows this process to take place.

Server-side processing

Server-side processing allows dynamic or interactive features to be added to web pages. This
is done by the server computer before the page is sent to the client computer. Server-side
processing can be accomplished using a range of technologies such as PHP, ASP(X), Perl/CGI
and ColdFusion. It can be used to, for example, validate and process information entered by
users into web forms, store or retrieve information in databases, and automatically send
emails.

Skip mechanisms

Functionalities added to an online questionnaire which automatically provide participants with
a route through the questionnaire, avoiding questions that are not relevant. When a question
is answered, the next question will be delivered according to the response so that different
questions are provided depending on particular answers.

 197

Submit button

A submit button sends the form data to the server when clicked. The action of doing this
depends on the form action specified. Most commonly it will be to email the results or add
them to a database.

e.g.:
Submit

HTML: <input type="submit" value="Submit" />

T

Text area

Allows the user to input a large amount of text. By default, the text will wrap onto a new line
when the end of a line is reached, and a scroll-bar will appear on the right-hand side when the
number of lines displayed is exceeded.

e.g.

HTML: <textarea cols="60" rows="5"></textarea>

Text box

Allows a single line of text to be input of a size and number of characters specified.

e.g.

HTML: <input type="text" size="25" maxlength="20" />

Text editor

A simple application which allows users to enter, edit and save text, typically with basic
formatting options.

U

URL

A URL (Uniform Resource Locator) is the address for a resource available online (usually a web
page). URLs consist of a reference to the server computer which holds the resource along with
a path to the file containing this resource on the computer. By typing the URL into a browser,
a request is sent from a user's computer (client computer) to the server computer to deliver
this resource.

 198

V

Validation

The functionality which allows forms to be automatically checked before or at submission to
ensure that any required questions have been answered and/or that data has been entered in
a suitable format. This can be done using client-side and/or server-side scripting. Typically,
validation routines will prevent submission where problems are found with the form and a
message will be delivered to the user prompting them to check their answers and resubmit.

W

'Web-safe' colour palette

A set of 216 colours recommended for use on the internet as they are not subject to variation
on different types of monitors and systems.

WYSIWYG

WYSIWYG (What You See Is What You Get) software packages such as Macromedia
Dreamweaver or Microsoft FrontPage are tools that allow web pages to be created and edited
using an interface that displays the page as it will appear in a browser.

X

Y

Z

 199

Resources

Listings of software and services for online
questionnaire production
Evans, J. R. and Mathur, A. (2005) The value of online surveys, Internet Research, 15, 2,
195- 219.

An examination of the involvement in online surveys of the largest US-based and global
market research firms. Provides an extensive list of the services offered as of late 2004.

The WebSM searchable database
http://www.websm.org/index.php ?fl=0&p1=1123 &p2=82&p3=1086 &id=1086
Database of online questionnaire software and services which has entries categorised by type,
code, cost, language and country.

The Association for Survey Computing searchable software register
http://www.asc.org.uk/ Register/index.htm
Searchable register which includes infomation about the software it contains such as listings of
the features offered and suppliers.

Web-based survey software
http://www.web-based-surveys.com/
Directory of software which can be browsed or accessed using the 'software finder' which
allows users to specify the features they require.

Services offering software plus hosting
The following examples are chosen as being representative of some of the different types of
services available as of December 2005. In each case, a range of comparable options may be
available.

Bristol Online Surveys
http://www.survey.bris.ac.uk/
Targeted at institutions requiring the option to have a number of different surveys and survey
administrators. Highly customisable to the style needs of institutions including an option to run
surveys on their server with an address that appears to be that of the institution.

Educara Survey
http://www.educara.com/ educara.cgi/ survey.html
An open source tool which offers hosting for an annual fee. The price rises according to the
type of use, with students paying the least, and commercial organisations the most.

Research together
http://www.doctoralstudents.com
Targeted at research students. Offers a simple questionnaire production and hosting service,
allowing users to download results as comma-separated values for import into an analysis
package. Relatively inexpensive one-off payment, but without many of the more sophisticated
functionalities such as email list management or analysis tools.

SurveyConsole/QuestionPro
http://www.surveyconsole.com/ / http://www.questionpro.com/
Both are divisions of the surveyanalytics company and they use the same software and
interface, but with different pricing. May offer sponsored use for academic or not-for-profit
projects if certain conditions are met. Also offer a range of free resources such as articles and
question templates.

 200

Surveymonkey
http://www.surveymonkey.com/
Compares well with many of the other available services in terms of features, but is one of the
cheapest commercial options.

Surveywriter
http://www.surveywriter.com/site/
Relatively expensive, but unusual in that charges are not made per period of use, but per
completed survey and email invitation with a minimum of 200.

Surveyz!
http://www.surveyz.com/
A range of relatively sophisticated features. targeted at individual researchers or at institutions.
Offers academic pricing and free use for academic projects if certain conditions are met. Also
has a range of resources such as articles on online questionnaires and copyable templates of
questionnaires and questions.

Websurveyor
http://www.websurveyor.com/
Relatively expensive, but with a wide range of features. Offers both hosting and software only
solutions.

Zoomerang
http://info.zoomerang.com/
Offers pricing for not-for-profit and educational institutions. Also offers a range of research
services such as questionnaire administration, panel services and translation.

Commercial questionnaire software
The following are some examples of commercial software for online questionnaires. A range of
other options are available.

Questionmark Perception
http://www.questionmark.com/uk/home.htm
An educational assessment tool which offers many of the key features needed to create basic
online questionnaires and has some of the more advanced features such as randomisation of
questions and conditional branching. Potentially useful option if the software is available
through the researcher's institution.

SelectSurveyASP
http://www.classapps.com
Relatively inexpensive. Offers 'classic' and 'advanced' versions with different levels of features
at different prices. Has a working online demo and a useful example survey which includes
comments on the features illustrated by particular questions. Offers a free installation service
and free technical support.

Snap Surveys
http://www.snapsurveys.com/
Extensive options for mixed-mode surveys, offering a 'core product', Snap Professional, with
add-ons for questionnaires via internet and PDAs, and to allow scanning and multiple data
entry. Expensive example of 'high-end' options.

SphinxSurvey
http://www.sphinxdevelopment.co.uk/ Products_sphinx.htm
Extensive analysis tools including a version offering lexical analysis. Educational and public-
sector pricing offered.

StatPac
http://www.statpac.com/
The online questionnaire software does not include analysis tools, but it can be purchased

 201

alongside the statistics tools offered. Has basic statistical tools or an advanced version
allowing multivariate statistical techniques. Technical support and updates are available free
for three months, but are chargeable via annual support/maintenance agreements thereafter.
A fully-functional version of the software can be downloaded and used for free, limited to 35
respondents for each survey. Download includes tutorials and extensive user guide.

Open-source software

General information

SourceForge.net
http://sourceforge.net
Searchable repository of open source projects.

Freshmeat.net
http://freshmeat.net/
Listing of new software releases.

OSS Watch: Top Tips For Selecting Open Source Software
http://www.oss-watch.ac.uk/ resources/tips.xml
Page from the website of OSS, a JISC-funded open source advisory service. Offers guidance
on selecting open source software.

Examples of questionnaire software

The following are some of the main examples of open source software for online
questionnaires (generally the more established and/or sophisticated options). A range of other
options may be available.

Educara Survey
http://www.educara.com/ educara.cgi/survey.html
In addition to the software, offers hosting for an annual fee. The price rises according to the
type of use, with students paying the least, and commercial organisations the most.

LE Survey
http://le-survey.sourceforge.net/
Designed as a tool for running questionnaires as part of longitudinal studies. Allows
respondents' responses to be matched to responses to previous questionnaires while
maintaining confidentiality. In early stages of development at the time of writing.

phpESP
http://phpesp.sourceforge.net/
Well-established software with a working demo available allowing the features and user-
interface to be tested.

phpSurveyor
http://www.phpsurveyor.org/
A range of relatively sophisticated features. Well-established with useful documentation.
Working demos are available allowing the features and user-interface to be tested.

Mod_Survey
http://gathering.itm.mh.se/modsurvey/
Well-established with sophisticated features such as dynamic content generation depending on
previous answers. Requires the user to learn to use XML syntax particular to the software.

VTSurvey
http://vtsurvey.sourceforge.net/
Easy to use and particularly useful for straightforward questionnaires as only the four main

 202

types of questions are supported (Multiple choice with radio buttons and Check boxes, and
short and long text entry boxes).

HTML
Getting started with HTML
http://www.w3.org/MarkUp/Guide/.
A good basic introduction to HTML from the World Wide Web Consortium. (W3C).

HTML Goodies
http://www.htmlgoodies.com/.
A range of short tutorials designed to help you with specific aspects of web design.

HTML Reference
http://www.w3schools.com/tags/ref_byfunc.asp.
List of HTML tags organised by their function, from W3Schools.

World Wide Web Consortium (W3C) HTML Validator
http://validator.w3.org/.
Enter a link to your web pages or upload a local file to check that your HTML meets web
standards and guidelines.

HTML Tidy
http://www.w3.org/People/Raggett/tidy/.
Automatically cleans up HTML to correct any problems caused either by mistakes or automatic
production of invalid HTML by web editors.

WC3 Links Checker
http://validator.w3.org/checklink.
Automatically checks for broken links in an HTML document.

CSS
Cascading Style Sheets (CSS)
http://www.w3.org/MarkUp/Guide/Style.html.
An introduction to Cascading Style Sheets from W3C.

CSS Reference
http://www.w3schools.com/css/css_reference.asp.
A reference to the properties and possible values that can be applied to different elements of
an HTML page from W3Schools. Also offers further information on the use of different
properties.

W3Schools CSS Tutorial
http://www.w3schools.com /css/default.asp
Tutorials which include examples and quizzes.

The Worldwide Web Consortium (W3C)'s CSS page
http://www.w3.org/Style/CSS/
Offers a wealth of information on CSS.

W3C CSS Validator
http://jigsaw.w3.org/ css-validator/.
Makes it possible to check that your CSS meets web standards and guidelines by entering a
link to your CSS file, uploading your file from your computer, or pasting your CSS into a text
box on the page.

Writing Efficient CSS
http://www.communitymx.com/ content/article.cfm?cid=90F55

 203

A useful article by John Gallant and Holly Bergevin on using CSS 'short hand' properties to
reduce the size of CSS files and increase efficiency.

JavaScript
JavaScript Primers
http://www.htmlgoodies.com/primers/jsp/.
30 short JavaScript lessons with learning activities.

JavaScript examples
http://JavaScript.internet.com/.
Over two-thousand examples of JavaScripts organised into sub-sections.

JavaScript use in forms
http://www.irt.org/ script/form.htm.
A range of JavaScript examples with source code specifically related to web-forms.

Accessibility
W3C Web Accessibility Initiative guidelines (WAI)
http://www.w3.org/ WAI/intro/wcag.php
Document which explains how to make Web content accessible to people with disabilities.
Includes checkpoints of actions that will improve accessibility and gives each checkpoint a
priority rating according to its importance. Also has links to explanations of how the
checkpoints can be achieved with HTML and CSS.

Accessibility validator
http://bobby.watchfire.com/bobby/html/en/index.jsp.
By entering the link to your page, you will receive a report highlighting any potential
accessibility problems.

Vischeck
http://www.vischeck.com/vischeck/
A service which simulates the appearance of pages to users with different forms of colour
blindness to allow pages to be tested for suitability for colour-blind users.

DEMOS Project - Guide to accessible web pages: User control
http://jarmin.com/demos/ access/control.html
A guide to making changes to the display of web pages in different browsers.

TechDis
http://www.techdis.ac.uk/.
A Joint Information Systems Committee (JISC)-funded advisory service on accessibility issues
in education. Contains useful resources and 'how to' guides on accessibility.

Macromedia's Accessibility Resource Center
http://www.macromedia.com/resources/accessibility/.
Offers general guides to accessibility and accessible design as well as specific guidance on how
to increase the accessibility of HTML and multi-media produced with Macromedia products
such as Dreamweaver and Flash.

Design issues
Usability news: Wichita State University Software Usability Research Lab
http://psychology.wichita.edu/surl/usability_news.html.
Newsletter providing a range of articles with information on research into software and website
design and usability.

 204

Usable Information Technology
http://www.useit.com/.
Leading site on usability and user studies by Jacob Neilson.

Sit Back and Relax: A Guide to Producing Readable, Accessible Onscreen Text
http://readability.tees.ac.uk/.
Guide to formatting text documents, especially long text documents, so that they may be
easily read from computer screens without the need for printing. Produced by Bruce Ingraham
and Emma Bradburn of the University of Teesside. Includes a range of Cascading Style Sheets
designed for readability.

Web-safe colours
http://www.lynda.com/hex.html.
Offers tables of web-safe colours organised by either hue (colour) or value (lightness). Makes
it easier to design appropriate colour schemes.

W3C Browser information
http://www.w3schools.com/browsers/default.asp
Information on the main browsers available at the time of writing is available on the
Worldwide Web Consortium (W3C) website along with statistics on the usage levels of each
(though it should be noted that the statistics are based on users of the site and should thus be
generally considered to be skewed in favour of more technically proficient users).

MOOCK Flash Player Inspector
http://moock.org/web design/flash/detection/moockfpi/
Provides a good explanation of Flash detection (and its limitations) along with free scripts to
carry it out.

Form validation

Client-side validation using JavaScript

Form Validation Using Javascript
http://www.4guysfromrolla.com/webtech/091998-1.shtml
An example of form validation using JavaScript with explanations from the 4guysfromrolla.com
site.

Javascript form validation – doing it right
http://www.xs4all.nl/~sbpoley/webmatters/formval.html
Interesting discussion of validation using JavaScript aiming to point out some of the main
pitfalls.

Server-side validation

Depending on the technology used, the following links may provide a useful source of
information, tutorials and examples on how to add server-side validation.

PHP/MySQL

WebMonkey PHP/MySQL Tutorials
http://webmonkey.wired.com/ webmonkey/99/21/ index4a_page2.html? tw=programming
A relatively straightforward introduction to validation using PHP.

Common Form Validations
http://codewalkers.com/ tutorials/47/2.html
A PHP tutorial which covers a range of different validation activities, leading to an example of
a complete form validated via PHP.

 205

Books

Coggeshall, J. (2005) PHP Unleashed. Indianapolis. SAMS.
Chapter 4: Working with Forms in PHP.
Chapter 5: Advanced Form Techniques.
http://www.samspublishing.com/ title/067232511X

Sklar, C. (2004) Learning PHP. Sebastapol, CA. O'Reilly.
Chapter 6: Making web forms.
http://www.oreilly.com/ catalog/learnphp5/

Sklar, D. and Trachtenberg, A. (2003) PHP Cookbook. Sebastapol, CA. O'Reilly.
Chapter 9: Forms.
http://www.oreilly.com/ catalog/phpckbk/

Zandstra , M. (2005) Teach Yourself PHP in 24 Hours, 2nd Edition. Indianapolis. SAMS.
Chapter 9: Working with Forms (available as a sample chapter)
http://www.samspublishing.com/ title/0672323117

ASP.NET

Microsoft's ASP.NET framework offers a number of ready-made web controls designed to carry
out server-side and, where available, client-side validation of web forms. These include
controls that check required fields have been completed, that check that data in particular
ranges or patterns has been entered (e.g. in the format of a telephone or credit-card number),
and that compare data from one form element for consistency with that from another.

ASP.NET Quickstart tutorials: Validating Form Input Controls
http://beta.asp.net/ QuickStartv20/ aspnet/doc/ validation/ default.aspx
A useful tutorial on how these controls work with code examples.

Form Validation with ASP.NET - It Doesn't Get Any Easier!
http://www.4guysfromrolla.com/ webtech/090200-1.shtml
Another step-by-step guide.

Books

Mitchell, S. (2003) Teach yourself ASP.NET. Indianapolis. SAMS.
Chapter 12. Validating User Input with Validation Controls.
http://www.samspublishing.com/ title/0672325438#

Walther, S. (2003) ASP.NET. Unleashed. Indianapolis. SAMS.
Chapter 2: Building Forms with Web Server Controls.
Chapter 3: Performing Form Validation with Validation Controls.
http://www.samspublishing.com/ title/0672325438#

PERL/CGI

Form Validation with Perl/CGI
http://www.elated.com/ tutorials/ programming/ perl_cgi/ form_validation/
An introductory tutorial for adding validation using PERL/CGI.

Books

Colburn, R. (2003) Teach yourself CGI. Indianapolis. SAMS.
Chapter 7: Validating user input.
http://www.samspublishing.com/ title/0672324040

Guelich, S., Gundavaram, S. and Birznieks, G. (2000) CGI Programming with Perl.
Sebastapol, CA. O'Reilly.
Chapter 4: Forms and CGI;

 206

Chapter 8: Security (available as a sample chapter).
http://www.oreilly.com/ catalog/ cgi2/ toc.html

Server-side processing technologies

General

Books

A good source of information is through the websites of key publishers in the field of web
development. These include the following publishers:

O'Reilly
http://www.oreilly.com/

Peachpit Press
http://www.peachpit.com/index.asp

SAMS
http://www.samspublishing.com/index.asp

These sites offer facilities to search for titles related to particular technologies and also offer
sample chapters and articles. They also offer access to Safari Bookshelf, which is one of the
most convenient access points for books on these technologies online. It offers searchable
access to the titles of these and other key publishers in the field for viewing onscreen or for
downloading.

Other publishers which are not included in Safari Bookshop offer similar searchable websites
and online access to their catalogues, e.g:

WROX
http://www.wrox.com/WileyCDA/

Apress
http://www.apress.com/

Websites

W3Schools
http://www.w3schools.com/
Provides information and tutorials on a range of server-side technologies including ASP, PHP,
SQL, and ASP.NET.

Webmonkey
http://www.webmonkey.com/
General web-design resource. The programming section of the 'How-to library' includes
tutorials on ASP, PHP, ColdFusion, and Perl/CGI.

PHP/MySQL

Books

Coggeshall, J. (2005) PHP Unleashed. Indianapolis. SAMS.

Kent, A. and Powers, D. (2004) PHP Web development with Macromedia Dreamweaver MX
2004. Berkeley, CA. Apress.

Naramore, E., Gerner, J., Le Scouarnec, Y., Stolz, J. and Glass, M. K. (2005) Beginning
PHP5, Apache, and MySQL Web Development. Indianapolis. WROX.

 207

Sklar, D. (2004) Learning PHP. Sebastapol, CA. O'Reilly.

Sklar, D. and Trachtenberg, A. (2003) PHP Cookbook. Sebastapol, CA. O'Reilly.

Ullman, L. (2005) PHP and MySQL for Dynamic Web Sites. Berkeley, CA. Peachpit Press.

Welling, L. and Thomson, L. (2004) PHP and MySQL Web Development. Indianapolis. SAMS.

Zandstra , M. (2005) Teach Yourself PHP in 24 Hours, 2nd Edition. Indianapolis. SAMS.

Websites

Codewalkers
http://codewalkers.com/
Offers a wide range of reources on PHP and MySQL including tutorials

PHP
http://uk.php.net/manual/en/introduction.php
An introduction to PHP from the official website which includes a very useful introductory
tutorial.

MySQL Tutorials
http://www.php-mysql-tutorial.com/
A series of tutorials on how to use PHP and MySQL to create and administer databases.

PHP/MySQL Tutorial
http://www.webmonkey.com// programming/php/ tutorials/tutorial4.html
A relatively straightforward introduction to PHP and MySQL, including data validation.

ASP.NET / ASP

The resources below refer to ASP.NET which has been designed to supercede ASP. However,
at the time of writing ASP remains a commonly-used server-side technology and a wide range
of resources are available offering information and tutorials in its use.

Books

Duthie, G. A. and MacDonald, M. (2003) ASP.NET in a Nutshell. Sebastapol, CA. O'Reilly.

Hart, C., Kauffman, J., Sussman, D. and Ullman, C. (2005) Beginning ASP.NET 2.0.
Indianapolis. WROX.

Kittel, M. A. and LeBlond, G. T. (2004) ASP.NET Cookbook. Sebastapol, CA. O'Reilly.

Martinez, J. and Parnell, R. (2003) ASP.NET Development with Dreamweaver MX. Berkeley,
CA. Peachpit Press.

Mitchell, S. (2003) Teach yourself ASP.NET. Indianapolis. SAMS.

Walther, S. (2003) ASP.NET. Unleashed. Indianapolis. SAMS.

Websites

ASP.NET Quickstart Tutorial
http://www.asp.net/ QuickStart/aspnet/ Default.aspx
Detailed tutorials on using ASP.NET including information on how ASP.NET controls are used
with code examples.

4 Guys from Rolla
http://www.4guysfromrolla.com/
Searchable resource with articles and tutorials on specific aspects of ASP.NET.

 208

CGI/PERL

Books

Colburn, R. (2003) Teach yourself CGI. Indianapolis. SAMS.

Guelich, S., Gundavaram, S. and Birznieks, G. (2000) CGI Programming with Perl.
Sebastapol, CA. O'Reilly.

Websites

CGI Programming 101
http://www.cgi101.com/
Tutorials aimed at beginners with information on how to set up a development environment
using CGI/PERL and how to process forms and write data to files.

CGI Made Really Easy - or, Writing CGI scripts to process Web forms
http://www.jmarshall.com/easy/cgi/
Basic introduction to collecting and formatting information from forms.

Elated
http://www.elated.com/tutorials/ programming/perl_cgi/
Tutorials covering a basic introduction to CGI programming with PERL along with issues such
as validation and emailing.

ColdFusion

Books

Brooks-Bilson, R. (2003) Programming ColdFusion MX. Sebastapol, CA. O'Reilly.

Camden, R., Chalnick, L., Buraglia, A. C. and Forta, B. (2005) Macromedia ColdFusion MX
7 Web Application Construction Kit. Berkeley, CA. Macromedia Press.

DeHaan, J. (2004) ColdFusion Web Development with Macromedia Dreamweaver MX 2004.
Berkeley, CA. Apress.

Mohnike, C. (2003) Teach Yourself Macromedia ColdFusion in 21 Days. Indianapolis. SAMS.

Websites

Macromedia's Support Centre for ColdFusion - Tutorials
http://www.macromedia.com/ support/coldfusion/ tutorial_index.html
A wide range of tutorials. Part of the ColdFusion Support Center which includes resources,
technical notes and a forum.

EasyCFM Tutorials
http://www.easycfm.com/tutorials/ index.cfm?dirView=True
A comprehensive range of ColdFusion tutorials.

JSP

Books

Bergsten, H. (2003) JavaServer Pages, Third Edition. Sebastapol, CA. O'Reilly.

Brunner, R. (2003) JSP: A Practical Guide for Programmers. San Fransisco, CA. Morgan
Kaufmann Publishers.

Holzner, S. (2002) Teach Yourself JavaServer Pages in 21 Days. Indianapolis. SAMS.

 209

Perry, B. W. (2004) Java Servlet & JSP Cookbook. Sebastapol, CA. O'Reilly.

Websites

Caucho JSP Tutorials
http://www.caucho.com/resin-3.0/ jsp/tutorial/index.xtp
Covers topics including form processing and emailing form contents.

JSP Tutorial
http://www.jsptut.com/
Series of tutorials covering the basics of JSP and dealing with forms processing, databases and
emailing. States that users should have a knowledge of HTML and Java.

JSP Olympus
http://www.jspolympus.com/JSP/JSP.jsp
Comprehensive range of tutorials.

 210

